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FPGA R&D

We mainly focus on using FPGA as a
hardware accelerator for scientific
computing.
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FPGA R&D

We mainly focus on using FPGA as a
hardware accelerator for scientific
computing.

We are interested in both low-level

programming and high-level synthesis.
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FPGA R&D

We mainly focus on using FPGA as a
hardware accelerator for scientific
computing.

We are interested in both low-level
programming and high-level synthesis.

We are also proposing a new
architecture called BondMachine (BM)
that is designed to be used as a
hardware accelerator.
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The BondMachine Framework

The BondMachine is an open source software ecosystem for the dynamical generation
of computer architectures that can be synthesized on FPGAs.

High level programming language (Golang) for both the hardware and software
Functional style programming
Architecture generating compiler

Computational graph and Machine Learning Models

[ Research activity ]
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®
The BondMachine, a moldable computer architecture - doi.org/10.1016/j.parco.2021.102873 - https://www.bondmachine.it
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R&D: Analysis
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R&D: Analysis

Comparison of LUTs, Regs, and Power

Latency and throughput analysis 12000 | —o= W

occupancy analysis
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R&D: Analysis

Latency and throughput analysis
occupancy analysis

Energy efficiency analysis
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R&D: Analysis

Latency and throughput analysis
occupancy analysis
Energy efficiency analysis

Comparison with other
architectures
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Solution LUTs REGs Time / Inf (us)
HLS4ML 10.31% 6.89% ~071
BondMachine 15.73% 794% ~14
CPU Time / Inf (s) En./Inf(J)
ARM Cortex A9 10E-02 10E-06
Intel i7-1260P 10E-06 10E-04
NVIDIA Tesla T4 10E-04 10E-03
ZedBoard BM 10E-06 10E-08
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R&D: Analysis

Latency and throughput analysis

occupancy analysis
Energy efficiency analysis

Comparison with other
architectures

Numerical precision analysis
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R&D: Analysis

Latency and throughput analysis
occupancy analysis
Energy efficiency analysis

Comparison with other
architectures

Numerical precision analysis

Data type and/ or instruction set
Analysis
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LUTs REGs DSPs | Latency (us) | Accuracy (%
Data Type Count (%) | Count (%) | Count (%) 12_2915:_1; y(m())
[ float32 476416 36.54 | 456235 17.50| 954 1057| g5+ 0.15 99.17
| float16 288944 2216298191 1144 479 531| o3 o5 100.00
|fipeT22 | 420015 3252| 352113 1350|950 1053 Lot (o 100,00
fipell | 303657 30.20 | 318821 12.23| 477 529
flpe6fl0 | 442809 33.97 | 334414 12.83 4 ops| 49018 100.00
| fipe4fo 347633 26.67 | 275653 10.57 4 o0p4| 280£015 97.78
| fipests 209033 22.94 | 261403 10.03 4 004 331£012 99.74
| fipe6fd 274523 21.06 | 236429  9.07 4 004 272£023 96.39
| fixed<16,8> | 205071 15.73 | 207670 7.94| 477 520| 139 +0.06 86.03
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R&D: Problems

SoC, edge and low
power computing
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R&D: Problems

SoC, edge and low
power computing

Machine Learning
(inference)

M.Mariotti, Workshop CCR 2025

High Level Code

output_file
output_path

DL model training

DL model conversion

Project build

Project configuration

Build of firmware
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Quantum Computing Simulation with FPGA

We started experimenting with quantum computing. Our main interested is using
FPGA to simulate quantum computers.

The goal is to experiment with classical/quantum hybrid computing backed by the
CPU/FPGA hardware.

The work plan goes on 4 main directions:

Learning and experimenting with reference quantum tools and establishing a
testing framework to validate and compare the results of different quantum
simulators. Activity 1

BondMachine based quantum simulator.
HLS based quantum simulator.
Symbolic Quantum Operator FPGA based simulator.
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Validation

Activity 1

To test the correctness of the quantum simulator we are developing, S ETeETE ]
we need to compare the results of the simulation with the results of a o e
well-known quantum simulators. e
We set up a validation framework in the bmgsimtests repository, at | e
the url: https://github.com/BondMachineHQ/bmgsimtests s

e

= analyze.ipynb

The repository is organized in two levels of directories. The first level G
is the quantum circuit to simulate, the second level is the specific 0 ot
simulatur to use. A Jupiter notebook is provided to run the tests and o rendem
compare the results. o et

Wi xgate
& .gitignore

= analyze.ipynb
README.md

the readme.md file contains the instructions to run the tests and
describe the two layer directory structure of the tests.

M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA



https://github.com/BondMachineHQ/bmqsimtests

Validation

Activity 1
o EHEHE-B oo
"z — s EHE- :
a —a-——EHE—oEHl-

the validation is done by comparing the results of the sim-
ulation with the results of the same quantum circuit sim-
ulated by a well-known quantum simulator. randomizing
both the quantum circuit and the input state.

M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA



BMQsim

With all the capabilities of the BondMachine in terms of parallelism and speed, of
customizability of the instruction set and the numerical precision, it is a natural question
to ask whether the BondMachine could be used to simulate quantum computers.

BMO-sim

A quantum computer simulator called bmgsim has been developed and is available
within the BondMachine project.
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Quantum Circuit

The first ingredient for bmqsim is a quantum circuit. The quantum circuit is a sequence
of quantum gates represented by a sequence of matrices. the “program” is a .bmq file
that contains code similar to the Qasm code.

%block codel .sequential
gbits 0,9l
Zero
h
cX

%endblock

%meta bmdef main:codel

Independently of the backend, bmgsim translates the .bmq file into N matrices.
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Backends

bmgsim may use different backends to operate. different backends create different
hardware to simulate the same quantum circuit. Moreover, each backend may have
different flavors to further fine-tune the HDL.

[ Software Simulation ]

Hardcoded matrices
sequence Loadable matrices

sequence

Full hardware deploy

Partially implemented

Partially implemented

Hardcoded matrices
sequence (HLS)

A command line option allows to choose the backend to use.
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Backend: Software Simulation

In here, the quantum gates are simulated by the CPU. This is the slowest backend, but
it useful for circuit design, debugging and testing. An example:

%%bash
cat program.bmg
v 0.0s
%block codel .sequential
gbits q@,ql
zero qe, gl

X qoe
[ qe, g1
%endb lock

%meta bmdef global main:codel

%%bash
bmgsim -software-simulation -software-simulation-input inputs.json -software-simulation-output outputs.json program.bmq
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Backend: Hardcoded matrices sequence

This backend creates a hardware
that for each state of the quantum
register, it applies the sequence of
matrices.

For each matrix operation a
dedicated processor is used. Within
the processor, the matrix elements
of all the gates are hardcoded.
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Bell state example

( 5 o
Circuit

Initial Hadamard CNOT  Output

States Gate Gate State

) =
10) V2

|0) |00) + [11)

~
toolchain
make accelerator
make bmapp
/

T

ock codel .sequential
gbits q0,ql
zero q0,ql1
h q0
cx q0,ql
sendblock

%meta bmdef global main:codel

J

gcc circuit.c -o circuit -1 pynq -lcma -lpthread
/circuit
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Backend: Hardcoded matrices sequence

Pros and Cons

Pros:

The matrices elements of the gates are already inside each processor. There no
movement of big matrices.

Fast

Cons:

The circuit is fixed. to use a different circuit hardware has to be re-synthesized.

Matrices are fully expanded. This may lead to a big hardware.

Sparse matrices uses hardware anyway.

M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA



Backend: Loadable matrices sequence

o ) Pros:
Similar to the previous backend,

but the matrices are loaded from
the final application command line.
This allows to change the matrices
without recompiling the hardware. Fast
The circuit is fixed, but a new circuit can be
injected by the final application.
To do so a small boot loader is Cons:
needed on every processor. And a
protocol to load the matrices
elements from the final application.

The matrices elements of the gates are already
inside each processor. There no movement of
big matrices.

Matrices are fully expanded. This may lead to a
big hardware.

Sparse matrices uses hardware anyway.
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Backend: Full hardware deploy

In this backend, the quantum

circuit is synthesized in full i

hardware. Instead of having a Fast

state that is updated by each gate, Less resources used with respect to the previous
only the relevant parts of the state backends

are updated. Keeping track of the Cons:
entalgment of the qubits and the

‘ The circuit is fixed and cannot be changed.
sparce nature of the matrices.
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Backend: HLS Hardcoded matrices sequence

This backend is similar to the BM
hardcoded matrices sequence Pros:

backend, but it uses the HLS There is no processor abstraction, the hardware

toolchain to create the hardware is lighter that the BM hardcoded matrices
instead of the BM toolchain. sequence backend.

Cons:

The matrices are hardcoded in the The circuit is fixed. to use a different circuit

HLS (C++) code. The HLS hardware has to be re-synthesized.
pragmas are used to create the Without the processor abstraction, the
hardware. The HLS code is then hardware is less flexible. Classical/quantum
compiled with the Vitis HLS hybrid computing is not possible.
toolchain.
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Applications

Alongside the FPGA hardware, bmgsim can create the end application that can be used
to simulate quantum circuits.

Three types of applications are available:
Jupiter Notebook using the PYNQ framework
Standalone C application using pyng-api
C++/0OpenCL application

The application are tailored to the specific board,circuit and backend used.
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Symbolic Quantum Operator approach

An alternative approach is to use symbolic quantum operators.

Quantum Circuit

y = Parameter('y"')

p = ParameterVector('p', length=2)

pgc = QuantumCircuit(2)
pac.ry(y, 0)
pac.cx(0, 1)
pqc.u(pl@l, @, pl1], 1)

Symbolic expr,ession (Sympy)
[ cos (Plol)cos (}) —e 0P sin (@)sin G) sm( [Ol)cos ( ) eloipll] sm( )cos ( [0]) ]
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Example from qiskit-symb - https://github.com/SimoneGasperini/qiskit-symb.git
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https://github.com/SimoneGasperini/qiskit-symb.git

Flexpy (FPGA Logic from EXpressions)

We created a project called flexpy to convert symbolic mathematical expressions into
FPGA logic.

The symbolic expressions are created using the sympy library. flexpy can parse the
expression and create either BASM (the BondMachine assembly language) or C/C++
code with HLS pragmas.

The generated code can be used to create an hardware accelerator for the given
expression using the BondMachine or HLS toolchain.

The approach is much more general, it can be used not only for quantum computing,
but also for any other application that can be expressed as a symbolic expression.

flexpy repository: https://github.com/BondMachineHQ/flexpy.git
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https://github.com/BondMachineHQ/flexpy.git

Flexpy example

Symbolic expression

.Symbol( 'x"', real=False)
bol('y', real=False)
(False):
sp.Array([( x + ) +
(y+Xx)+Xx+Xx+
X+ X+ X, X +yl])

-

toolchain

make bondmachine

make ...
make show
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Flexpy test units

Some mathematical operations (for example the cosine) are flequently used in quantum
computing.

These operations can either be implemented in hardware (HDL) or in software (in
assembly in the BM case). Whatever the case, implementing these operations is a
complex task.

flexpy can be used to generate test units to check the correctness of the
implementation of these operations.

Moreover, the test units can be used to check also the errors introduced by using
reduced precision data types and operations.

flexpytester repository: https://github.com/BondMachineHQ /flexpytester.git
Symbolic tests repository: https://github.com/BondMachineHQ/bmsymtests.git
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Flexpy test units
Activity 4

cosine assembly
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Flexpy test units
Activity 4

| fragtester —library flexpy —fragment cosargreal.basm

cosine assembly
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Flexpy test units
Activity 4

cosine assembly

flexpy expression
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Flexpy test units
Activity 4

| fragtester —library flexpy —fragment cosargreal.basm

cosine assembly

N

BM JSON rapresentation |

flexpy expression
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Flexpy test units
Activity 4

| fragtester —library flexpy —fragment cosargreal.basm

cosine assembly

/N

BM JSON rapresentation

flexpy expression

™~

/

| flexpytester |

y
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Flexpy test units
Activity 4

| fragtester —library flexpy —fragment cosargreal.basm

cosine assembly

/\

| BM JSON rapresentation

|

| bondmachine tool |

flexpy expression

™~

/

| flexpytester |

y
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Flexpy test units
Activity 4

| fragtester —library flexpy —fragment cosargreal.basm

cosine assembly

/\

| BM JSON rapresentation

|

| bondmachine tool |

flexpy expression

™~

/

| flexpytester |

y
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Flexpy test units

fragtester —library flexpy —fragment cosargreal.basm ‘

cosine assembly
;fragtester instance cosprec 1,5,10
;sympy from sympy import *
;sympy x = Symbol(’x’, real=True)

;sympy symbols = [x]
;sympy testRanges = {

flexpy expression

3 sympy ’real: x’: BM N £ N

. rapresentation SR EEy penE <
list(np.arange(-5,5,0.1)), Jso P x = Symbol(’x’, real=True)
;Sympy } symbols = [x]

;sympy with evaluate(False): testRanges = {’real: x’:

;5 sympy spExpr = cos(x) ‘ list(np.arange(-5,5,0.1)),
H }

3 bondmachine tool
%fragment cosargreal

[cosine asm code]
%endfragment

vith evaluate(False):
spExpr = cos(x)

| ) |
v
e E—

Outputs
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Flexpy test units

’ fragtester —library flexpy —fragment cosargreal.basm ‘

cosine assembly

;fragtester instance cosprec 1,5,10
;sympy from sympy import *
;sympy x = Symbol(’x’, real=True)

isympy symbols = [x] flexpy expression

;sympy testRanges = {

3 Sympy ’real: x’: i from sym import *
list(np.arange(-5,5,0.1)), BM JSON rapresentation x = Syib}:i'(’xls, real=True)

;Sympy } symbols = [x]

;sympy with evaluate(False): testRanges = {’real: x’:

;5 sympy spExpr = cos(x) ‘ list(np.arange(-5,5,0.1)),
H }

v ’ bondmachine tool
%fragment cosargreal ...

[cosine asm code]
%endfragment

vith evaluate(False):
spExpr = cos(x)

FPGA ’ BM Simulator ‘ ’ flexpytester ‘
v l
&=
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Flexpy test units

’ fragtester —library flexpy —fragment cosargreal.basm ‘

cosine assembly

;fragtester instance cosprec 1,5,10
;sympy from sympy import *
;sympy x = Symbol(’x’, real=True)

isympy symbols = [x] flexpy expression

;sympy testRanges = {

3 Sympy ’real: x’: i from sym import *
list(np.arange(-5,5,0.1)), BM JSON rapresentation x = Syib}:i'(’xls, real=True)

;Sympy } symbols = [x]

;sympy with evaluate(False): testRanges = {’real: x’:

;5 sympy spExpr = cos(x) ‘ list(np.arange(-5,5,0.1)),
H }

v ’ bondmachine tool
%fragment cosargreal ...

[cosine asm code]
%endfragment

vith evaluate(False):
spExpr = cos(x)

| |
FPGA ’ BM Simulator ‘ ’ flexpytester ‘
v | )
&=
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Flexpy test units

’ fragtester —library flexpy —fragment cosargreal.basm ‘

cosine assembly

;fragtester instance cosprec 1,5,10
;sympy from sympy import *
;sympy x = Symbol(’x’, real=True)

isympy symbols = [x] flexpy expression

;sympy testRanges = {

3 Sympy ’real: x’: i from sym import *
list(np.arange(-5,5,0.1)), BM JSON rapresentation x = Syib}:i'(’xls, real=True)

;Sympy } symbols = [x]

;sympy with evaluate(False): testRanges = {’real: x’:

;5 sympy spExpr = cos(x) ‘ list(np.arange(-5,5,0.1)),
H }

v ’ bondmachine tool
%fragment cosargreal ...

[cosine asm code]
%endfragment

vith evaluate(False):
spExpr = cos(x)

| |
FPGA ’ BM Simulator ‘ ’ flexpytester ‘
v | )
&=
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Conclusions, Ongoing Work and Future Work

We enabled the simulation of quantum circuits using FPGA.

Ongoing work:
The inclusion of a parametric quantum circuit in the bmgsim framework.

The development of all the instructions needed to simulate quantum circuits in the
flexpy framework.

The development of a HLS backend for the flexpy framework.

Goals:

Operate useful quantum circuits on FPGA and apply all the techniques we
developed to test and optimize the computation in terms of latency, throughput,
power consumption and numerical precision.

Use the HPC bubbles with FPGA accelerators to run (not only) quantum circuits
on multi-FPGA systems.
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