
Quantum Computing Simulation with FPGA

Mirko Mariotti 1,2 Giulio Bianchini 1 Loriano Storchi 3,2 Daniele Spiga 2

Diego Ciangottini 2 Giuseppe Prudente 2

1Dipartimento di Fisica e Geologia, Universitá degli Studi di Perugia

2INFN sezione di Perugia

3Dipartimento di Farmacia, Universitá degli Studi G. D’Annunzio

M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA 1



Outline

Background
■ FPGA
■ Firmware
■ Quantum Computing

Timeline

Spoke 2 use cases - Ultra-fast algorithms running on FPGA
Development of a Customizable Framework for Multi-FPGA Accelerator Generation via
architectures

M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA 2



FPGA R&D

■ We mainly focus on using FPGA as a
hardware accelerator for scientific
computing.

■ We are interested in both low-level
programming and high-level synthesis.

■ We are also proposing a new
architecture called BondMachine (BM)
that is designed to be used as a
hardware accelerator.

M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA 3



FPGA R&D

■ We mainly focus on using FPGA as a
hardware accelerator for scientific
computing.

■ We are interested in both low-level
programming and high-level synthesis.

■ We are also proposing a new
architecture called BondMachine (BM)
that is designed to be used as a
hardware accelerator.

M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA 3



FPGA R&D

■ We mainly focus on using FPGA as a
hardware accelerator for scientific
computing.

■ We are interested in both low-level
programming and high-level synthesis.

■ We are also proposing a new
architecture called BondMachine (BM)
that is designed to be used as a
hardware accelerator.

M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA 3



The BondMachine Framework
The BondMachine is an open source software ecosystem for the dynamical generation
of computer architectures that can be synthesized on FPGAs.
■ High level programming language (Golang) for both the hardware and software
■ Functional style programming
■ Architecture generating compiler
■ Computational graph and Machine Learning Models

The BondMachine, a moldable computer architecture - doi.org/10.1016/j.parco.2021.102873 - https://www.bondmachine.it

M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA 4

https://doi.org/10.1016/j.parco.2021.102873
https://www.bondmachine.it


R&D: Analysis

■ Latency and throughput analysis

■ occupancy analysis

■ Energy efficiency analysis

■ Comparison with other
architectures

■ Numerical precision analysis

■ Data type and/ or instruction set
Analysis

M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA 5



R&D: Analysis

■ Latency and throughput analysis

■ occupancy analysis

■ Energy efficiency analysis

■ Comparison with other
architectures

■ Numerical precision analysis

■ Data type and/ or instruction set
Analysis

M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA 5



R&D: Analysis

■ Latency and throughput analysis

■ occupancy analysis

■ Energy efficiency analysis

■ Comparison with other
architectures

■ Numerical precision analysis

■ Data type and/ or instruction set
Analysis

M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA 5



R&D: Analysis

■ Latency and throughput analysis

■ occupancy analysis

■ Energy efficiency analysis

■ Comparison with other
architectures

■ Numerical precision analysis

■ Data type and/ or instruction set
Analysis

M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA 5



R&D: Analysis

■ Latency and throughput analysis

■ occupancy analysis

■ Energy efficiency analysis

■ Comparison with other
architectures

■ Numerical precision analysis

■ Data type and/ or instruction set
Analysis

M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA 5



R&D: Analysis

■ Latency and throughput analysis

■ occupancy analysis

■ Energy efficiency analysis

■ Comparison with other
architectures

■ Numerical precision analysis

■ Data type and/ or instruction set
Analysis

M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA 5



R&D: Problems

■ SoC, edge and low
power computing

■ Machine Learning
(inference)

M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA 6



R&D: Problems

■ SoC, edge and low
power computing

■ Machine Learning
(inference)

M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA 6



Quantum Computing Simulation with FPGA

We started experimenting with quantum computing. Our main interested is using
FPGA to simulate quantum computers.

The goal is to experiment with classical/quantum hybrid computing backed by the
CPU/FPGA hardware.

The work plan goes on 4 main directions:
■ Learning and experimenting with reference quantum tools and establishing a

testing framework to validate and compare the results of different quantum
simulators. Activity 1

■ BondMachine based quantum simulator. Activity 2
■ HLS based quantum simulator. Activity 3
■ Symbolic Quantum Operator FPGA based simulator. Activity 4

M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA 7



Validation
Activity 1

To test the correctness of the quantum simulator we are developing,
we need to compare the results of the simulation with the results of a
well-known quantum simulators.
We set up a validation framework in the bmqsimtests repository, at
the url: https://github.com/BondMachineHQ/bmqsimtests

The repository is organized in two levels of directories. The first level
is the quantum circuit to simulate, the second level is the specific
simulatur to use. A Jupiter notebook is provided to run the tests and
compare the results.

the readme.md file contains the instructions to run the tests and
describe the two layer directory structure of the tests.

M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA 8

https://github.com/BondMachineHQ/bmqsimtests


Validation
Activity 1

the validation is done by comparing the results of the sim-
ulation with the results of the same quantum circuit sim-
ulated by a well-known quantum simulator. randomizing
both the quantum circuit and the input state.

M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA 9



BMQsim
Activity 2

With all the capabilities of the BondMachine in terms of parallelism and speed, of
customizability of the instruction set and the numerical precision, it is a natural question

to ask whether the BondMachine could be used to simulate quantum computers.

A quantum computer simulator called bmqsim has been developed and is available
within the BondMachine project.

M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA 10



Quantum Circuit
Activity 2

The first ingredient for bmqsim is a quantum circuit. The quantum circuit is a sequence
of quantum gates represented by a sequence of matrices. the “program” is a .bmq file

that contains code similar to the Qasm code.

bmq files

Basm style
parsing
engine

Independently of the backend, bmqsim translates the .bmq file into N matrices.

M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA 11



Backends
Activity 2

bmqsim may use different backends to operate. different backends create different
hardware to simulate the same quantum circuit. Moreover, each backend may have

different flavors to further fine-tune the HDL.

Software Simulation

Loadable matrices
sequence

Partially implemented

Hardcoded matrices
sequence Full hardware deploy

Partially implemented
Hardcoded matrices

sequence (HLS)

A command line option allows to choose the backend to use.
M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA 12



Backend: Software Simulation

In here, the quantum gates are simulated by the CPU. This is the slowest backend, but
it useful for circuit design, debugging and testing. An example:

M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA 13



Backend: Hardcoded matrices sequence

This backend creates a hardware
that for each state of the quantum
register, it applies the sequence of
matrices.

For each matrix operation a
dedicated processor is used. Within
the processor, the matrix elements
of all the gates are hardcoded.

M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA 14



Bell state example
Circuit

bmq code

toolchain

Accelerator

FPGA

Application

Run

M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA 15



Backend: Hardcoded matrices sequence
Pros and Cons

Pros:
■ The matrices elements of the gates are already inside each processor. There no

movement of big matrices.
■ Fast

Cons:
■ The circuit is fixed. to use a different circuit hardware has to be re-synthesized.
■ Matrices are fully expanded. This may lead to a big hardware.
■ Sparse matrices uses hardware anyway.

M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA 16



Backend: Loadable matrices sequence

Similar to the previous backend,
but the matrices are loaded from
the final application command line.
This allows to change the matrices
without recompiling the hardware.

To do so a small boot loader is
needed on every processor. And a
protocol to load the matrices
elements from the final application.

Pros:
■ The matrices elements of the gates are already

inside each processor. There no movement of
big matrices.

■ Fast
■ The circuit is fixed, but a new circuit can be

injected by the final application.
Cons:
■ Matrices are fully expanded. This may lead to a

big hardware.
■ Sparse matrices uses hardware anyway.

M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA 17



Backend: Full hardware deploy

In this backend, the quantum
circuit is synthesized in full
hardware. Instead of having a
state that is updated by each gate,
only the relevant parts of the state
are updated. Keeping track of the
entalgment of the qubits and the
sparce nature of the matrices.

Pros:
■ Fast
■ Less resources used with respect to the previous

backends
Cons:
■ The circuit is fixed and cannot be changed.

M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA 18



Backend: HLS Hardcoded matrices sequence
Activity 3

This backend is similar to the BM
hardcoded matrices sequence
backend, but it uses the HLS
toolchain to create the hardware
instead of the BM toolchain.

The matrices are hardcoded in the
HLS (C++) code. The HLS
pragmas are used to create the
hardware. The HLS code is then
compiled with the Vitis HLS
toolchain.

Pros:
■ There is no processor abstraction, the hardware

is lighter that the BM hardcoded matrices
sequence backend.

Cons:
■ The circuit is fixed. to use a different circuit

hardware has to be re-synthesized.
■ Without the processor abstraction, the

hardware is less flexible. Classical/quantum
hybrid computing is not possible.

M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA 19



Applications

Alongside the FPGA hardware, bmqsim can create the end application that can be used
to simulate quantum circuits.

Three types of applications are available:
■ Jupiter Notebook using the PYNQ framework
■ Standalone C application using pynq-api
■ C++/OpenCL application

The application are tailored to the specific board,circuit and backend used.

M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA 20



Symbolic Quantum Operator approach
Activity 4

An alternative approach is to use symbolic quantum operators.

Quantum Circuit

Symbolic expression (Sympy)

BM/HLS

qiskit-symb

flexpy

Example from qiskit-symb - https://github.com/SimoneGasperini/qiskit-symb.git

M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA 21

https://github.com/SimoneGasperini/qiskit-symb.git


Flexpy (FPGA Logic from EXpressions)
Activity 4

We created a project called flexpy to convert symbolic mathematical expressions into
FPGA logic.

The symbolic expressions are created using the sympy library. flexpy can parse the
expression and create either BASM (the BondMachine assembly language) or C/C++
code with HLS pragmas.

The generated code can be used to create an hardware accelerator for the given
expression using the BondMachine or HLS toolchain.

The approach is much more general, it can be used not only for quantum computing,
but also for any other application that can be expressed as a symbolic expression.

flexpy repository: https://github.com/BondMachineHQ/flexpy.git

M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA 22

https://github.com/BondMachineHQ/flexpy.git


Flexpy example
Activity 4

Symbolic expression

toolchain

Accelerator

M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA 23



Flexpy test units
Activity 4

Some mathematical operations (for example the cosine) are flequently used in quantum
computing.

These operations can either be implemented in hardware (HDL) or in software (in
assembly in the BM case). Whatever the case, implementing these operations is a
complex task.

flexpy can be used to generate test units to check the correctness of the
implementation of these operations.

Moreover, the test units can be used to check also the errors introduced by using
reduced precision data types and operations.

flexpytester repository: https://github.com/BondMachineHQ/flexpytester.git
Symbolic tests repository: https://github.com/BondMachineHQ/bmsymtests.git

M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA 24

https://github.com/BondMachineHQ/flexpytester.git
https://github.com/BondMachineHQ/bmsymtests.git


Flexpy test units
Activity 4

cosine assembly
;fragtester instance cosprec 1,5,10
;sympy from sympy import *
;sympy x = Symbol(’x’, real=True)
;sympy symbols = [x]
;sympy testRanges = {
;sympy ’real: x’:

list(np.arange (-5,5,0.1)),
;sympy }
;sympy with evaluate(False):
;sympy spExpr = cos(x)
;
%fragment cosargreal ...
[cosine asm code]

%endfragment

fragtester –library flexpy –fragment cosargreal.basm

BM JSON rapresentation

flexpy expression
from sympy import *
x = Symbol(’x’, real=True)
symbols = [x]
testRanges = {’real: x’:

list(np.arange (-5,5,0.1)),
}

with evaluate(False):
spExpr = cos(x)

bondmachine tool

BM SimulatorFPGA flexpytester

Inputs

OutputsSim OutputsFPGA
Outputs

M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA 25



Flexpy test units
Activity 4

cosine assembly
;fragtester instance cosprec 1,5,10
;sympy from sympy import *
;sympy x = Symbol(’x’, real=True)
;sympy symbols = [x]
;sympy testRanges = {
;sympy ’real: x’:

list(np.arange (-5,5,0.1)),
;sympy }
;sympy with evaluate(False):
;sympy spExpr = cos(x)
;
%fragment cosargreal ...
[cosine asm code]

%endfragment

fragtester –library flexpy –fragment cosargreal.basm

BM JSON rapresentation

flexpy expression
from sympy import *
x = Symbol(’x’, real=True)
symbols = [x]
testRanges = {’real: x’:

list(np.arange (-5,5,0.1)),
}

with evaluate(False):
spExpr = cos(x)

bondmachine tool

BM SimulatorFPGA flexpytester

Inputs

OutputsSim OutputsFPGA
Outputs

M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA 25



Flexpy test units
Activity 4

cosine assembly
;fragtester instance cosprec 1,5,10
;sympy from sympy import *
;sympy x = Symbol(’x’, real=True)
;sympy symbols = [x]
;sympy testRanges = {
;sympy ’real: x’:

list(np.arange (-5,5,0.1)),
;sympy }
;sympy with evaluate(False):
;sympy spExpr = cos(x)
;
%fragment cosargreal ...
[cosine asm code]

%endfragment

fragtester –library flexpy –fragment cosargreal.basm

BM JSON rapresentation

flexpy expression
from sympy import *
x = Symbol(’x’, real=True)
symbols = [x]
testRanges = {’real: x’:

list(np.arange (-5,5,0.1)),
}

with evaluate(False):
spExpr = cos(x)

bondmachine tool

BM SimulatorFPGA flexpytester

Inputs

OutputsSim OutputsFPGA
Outputs

M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA 25



Flexpy test units
Activity 4

cosine assembly
;fragtester instance cosprec 1,5,10
;sympy from sympy import *
;sympy x = Symbol(’x’, real=True)
;sympy symbols = [x]
;sympy testRanges = {
;sympy ’real: x’:

list(np.arange (-5,5,0.1)),
;sympy }
;sympy with evaluate(False):
;sympy spExpr = cos(x)
;
%fragment cosargreal ...
[cosine asm code]

%endfragment

fragtester –library flexpy –fragment cosargreal.basm

BM JSON rapresentation

flexpy expression
from sympy import *
x = Symbol(’x’, real=True)
symbols = [x]
testRanges = {’real: x’:

list(np.arange (-5,5,0.1)),
}

with evaluate(False):
spExpr = cos(x)

bondmachine tool

BM SimulatorFPGA flexpytester

Inputs

OutputsSim OutputsFPGA
Outputs

M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA 25



Flexpy test units
Activity 4

cosine assembly
;fragtester instance cosprec 1,5,10
;sympy from sympy import *
;sympy x = Symbol(’x’, real=True)
;sympy symbols = [x]
;sympy testRanges = {
;sympy ’real: x’:

list(np.arange (-5,5,0.1)),
;sympy }
;sympy with evaluate(False):
;sympy spExpr = cos(x)
;
%fragment cosargreal ...
[cosine asm code]

%endfragment

fragtester –library flexpy –fragment cosargreal.basm

BM JSON rapresentation

flexpy expression
from sympy import *
x = Symbol(’x’, real=True)
symbols = [x]
testRanges = {’real: x’:

list(np.arange (-5,5,0.1)),
}

with evaluate(False):
spExpr = cos(x)

bondmachine tool

BM SimulatorFPGA flexpytester

Inputs

OutputsSim OutputsFPGA
Outputs

M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA 25



Flexpy test units
Activity 4

cosine assembly
;fragtester instance cosprec 1,5,10
;sympy from sympy import *
;sympy x = Symbol(’x’, real=True)
;sympy symbols = [x]
;sympy testRanges = {
;sympy ’real: x’:

list(np.arange (-5,5,0.1)),
;sympy }
;sympy with evaluate(False):
;sympy spExpr = cos(x)
;
%fragment cosargreal ...
[cosine asm code]

%endfragment

fragtester –library flexpy –fragment cosargreal.basm

BM JSON rapresentation

flexpy expression
from sympy import *
x = Symbol(’x’, real=True)
symbols = [x]
testRanges = {’real: x’:

list(np.arange (-5,5,0.1)),
}

with evaluate(False):
spExpr = cos(x)

bondmachine tool

BM SimulatorFPGA flexpytester

Inputs

OutputsSim OutputsFPGA
Outputs

M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA 25



Flexpy test units
Activity 4

cosine assembly
;fragtester instance cosprec 1,5,10
;sympy from sympy import *
;sympy x = Symbol(’x’, real=True)
;sympy symbols = [x]
;sympy testRanges = {
;sympy ’real: x’:

list(np.arange (-5,5,0.1)),
;sympy }
;sympy with evaluate(False):
;sympy spExpr = cos(x)
;
%fragment cosargreal ...
[cosine asm code]

%endfragment

fragtester –library flexpy –fragment cosargreal.basm

BM JSON rapresentation

flexpy expression
from sympy import *
x = Symbol(’x’, real=True)
symbols = [x]
testRanges = {’real: x’:

list(np.arange (-5,5,0.1)),
}

with evaluate(False):
spExpr = cos(x)

bondmachine tool

BM SimulatorFPGA flexpytester

Inputs

OutputsSim OutputsFPGA
Outputs

M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA 25



Flexpy test units
Activity 4

cosine assembly
;fragtester instance cosprec 1,5,10
;sympy from sympy import *
;sympy x = Symbol(’x’, real=True)
;sympy symbols = [x]
;sympy testRanges = {
;sympy ’real: x’:

list(np.arange (-5,5,0.1)),
;sympy }
;sympy with evaluate(False):
;sympy spExpr = cos(x)
;
%fragment cosargreal ...
[cosine asm code]

%endfragment

fragtester –library flexpy –fragment cosargreal.basm

BM JSON rapresentation

flexpy expression
from sympy import *
x = Symbol(’x’, real=True)
symbols = [x]
testRanges = {’real: x’:

list(np.arange (-5,5,0.1)),
}

with evaluate(False):
spExpr = cos(x)

bondmachine tool

BM SimulatorFPGA flexpytester

Inputs

OutputsSim OutputsFPGA
Outputs

M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA 25



Flexpy test units
Activity 4

cosine assembly
;fragtester instance cosprec 1,5,10
;sympy from sympy import *
;sympy x = Symbol(’x’, real=True)
;sympy symbols = [x]
;sympy testRanges = {
;sympy ’real: x’:

list(np.arange (-5,5,0.1)),
;sympy }
;sympy with evaluate(False):
;sympy spExpr = cos(x)
;
%fragment cosargreal ...
[cosine asm code]

%endfragment

fragtester –library flexpy –fragment cosargreal.basm

BM JSON rapresentation

flexpy expression
from sympy import *
x = Symbol(’x’, real=True)
symbols = [x]
testRanges = {’real: x’:

list(np.arange (-5,5,0.1)),
}

with evaluate(False):
spExpr = cos(x)

bondmachine tool

BM SimulatorFPGA flexpytester

Inputs

OutputsSim OutputsFPGA
Outputs

M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA 25



Flexpy test units
Activity 4

cosine assembly
;fragtester instance cosprec 1,5,10
;sympy from sympy import *
;sympy x = Symbol(’x’, real=True)
;sympy symbols = [x]
;sympy testRanges = {
;sympy ’real: x’:

list(np.arange (-5,5,0.1)),
;sympy }
;sympy with evaluate(False):
;sympy spExpr = cos(x)
;
%fragment cosargreal ...
[cosine asm code]

%endfragment

fragtester –library flexpy –fragment cosargreal.basm

BM JSON rapresentation

flexpy expression
from sympy import *
x = Symbol(’x’, real=True)
symbols = [x]
testRanges = {’real: x’:

list(np.arange (-5,5,0.1)),
}

with evaluate(False):
spExpr = cos(x)

bondmachine tool

BM SimulatorFPGA flexpytester

Inputs

OutputsSim OutputsFPGA
Outputs

M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA 25



Flexpy test units
Activity 4

cosine assembly
;fragtester instance cosprec 1,5,10
;sympy from sympy import *
;sympy x = Symbol(’x’, real=True)
;sympy symbols = [x]
;sympy testRanges = {
;sympy ’real: x’:

list(np.arange (-5,5,0.1)),
;sympy }
;sympy with evaluate(False):
;sympy spExpr = cos(x)
;
%fragment cosargreal ...
[cosine asm code]

%endfragment

fragtester –library flexpy –fragment cosargreal.basm

BM JSON rapresentation

flexpy expression
from sympy import *
x = Symbol(’x’, real=True)
symbols = [x]
testRanges = {’real: x’:

list(np.arange (-5,5,0.1)),
}

with evaluate(False):
spExpr = cos(x)

bondmachine tool

BM SimulatorFPGA flexpytester

Inputs

OutputsSim OutputsFPGA
Outputs

M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA 25



Conclusions, Ongoing Work and Future Work
We enabled the simulation of quantum circuits using FPGA.

Ongoing work:
■ The inclusion of a parametric quantum circuit in the bmqsim framework.
■ The development of all the instructions needed to simulate quantum circuits in the

flexpy framework.
■ The development of a HLS backend for the flexpy framework.

Goals:
■ Operate useful quantum circuits on FPGA and apply all the techniques we

developed to test and optimize the computation in terms of latency, throughput,
power consumption and numerical precision.

■ Use the HPC bubbles with FPGA accelerators to run (not only) quantum circuits
on multi-FPGA systems.

M.Mariotti, Workshop CCR 2025 Quantum Computing Simulation with FPGA 26


