
Go, hardware, Go !
The BondMachine Project

Mirko Mariotti

Department of Physics and Geology - University of Perugia
INFN Perugia

October 22, 2018



Introduction

Introduction

The BondMachine: a comprehensive approach to
computing.

In this presentation i will talk about:

� Technological background of the project.
� Ideas behind the BondMachine.
� The Bondgo compiler and ancillary tools.
� Clustering.
� Conclusion.

Mirko Mariotti Go, hardware, Go ! October 22, 2018 2/42



Technological Background Programmable Logic

FPGA
What is it ?

� A field-programmable gate array (FPGA) is an integrated circuit
whose logic is re-programmable. It’s used to build
reconfigurable digital circuits.

�

FPGAs contain an array of pro-
grammable logic blocks, and a
hierarchy of reconfigurable intercon-
nects that allow the blocks to be
"wired together".

�
Logic blocks can be configured to per-
form complex combinational func-
tions.

�
The FPGA configuration is generally specified using a hard-
ware description language (HDL).

Mirko Mariotti Go, hardware, Go ! October 22, 2018 3/42



Technological Background Programmable Logic

FPGA
What is it ?

� A field-programmable gate array (FPGA) is an integrated circuit
whose logic is re-programmable. It’s used to build
reconfigurable digital circuits.

�

FPGAs contain an array of pro-
grammable logic blocks, and a
hierarchy of reconfigurable intercon-
nects that allow the blocks to be
"wired together".

�
Logic blocks can be configured to per-
form complex combinational func-
tions.

�
The FPGA configuration is generally specified using a hard-
ware description language (HDL).

Mirko Mariotti Go, hardware, Go ! October 22, 2018 3/42



Technological Background Programmable Logic

FPGA
What is it ?

� A field-programmable gate array (FPGA) is an integrated circuit
whose logic is re-programmable. It’s used to build
reconfigurable digital circuits.

�

FPGAs contain an array of pro-
grammable logic blocks, and a
hierarchy of reconfigurable intercon-
nects that allow the blocks to be
"wired together".

�
Logic blocks can be configured to per-
form complex combinational func-
tions.

�
The FPGA configuration is generally specified using a hard-
ware description language (HDL).

Mirko Mariotti Go, hardware, Go ! October 22, 2018 3/42



Technological Background Programmable Logic

FPGA
What is it ?

� A field-programmable gate array (FPGA) is an integrated circuit
whose logic is re-programmable. It’s used to build
reconfigurable digital circuits.

�

FPGAs contain an array of pro-
grammable logic blocks, and a
hierarchy of reconfigurable intercon-
nects that allow the blocks to be
"wired together".

�
Logic blocks can be configured to per-
form complex combinational func-
tions.

�
The FPGA configuration is generally specified using a hard-
ware description language (HDL).

Mirko Mariotti Go, hardware, Go ! October 22, 2018 3/42



Technological Background Programmable Logic

FPGA
Why is used ?

� Prototyping, hardware testing, etc.
� Low development cost and short time to market.
� Computing

Mirko Mariotti Go, hardware, Go ! October 22, 2018 4/42



Technological Background Programmable Logic

FPGA
Why is used ?

� Prototyping, hardware testing, etc.
� Low development cost and short time to market.
� Computing

Mirko Mariotti Go, hardware, Go ! October 22, 2018 4/42



Technological Background Programmable Logic

FPGA
Why is used ?

� Prototyping, hardware testing, etc.
� Low development cost and short time to market.
� Computing

Mirko Mariotti Go, hardware, Go ! October 22, 2018 4/42



Technological Background Architectures

Computer Architectures
Multi-core and Heterogeneous

Today’s computer architecture are:

� Multi-core,Two or more independent actual processing
units execute multiple instructions at the same time.
� The power is given by the number of cores.
� Parallelism has to be addressed.

� Heterogeneous, di�erent types of processing units.
� Cell, GPU, Parallela, TPU.
� The power is given by the specialization.
� The units data transfer has to be addressed.
� The scheduling has to be addressed.

Mirko Mariotti Go, hardware, Go ! October 22, 2018 5/42



Technological Background Architectures

Computer Architectures
Multi-core and Heterogeneous

Today’s computer architecture are:

� Multi-core,Two or more independent actual processing
units execute multiple instructions at the same time.
� The power is given by the number of cores.
� Parallelism has to be addressed.

� Heterogeneous, di�erent types of processing units.
� Cell, GPU, Parallela, TPU.
� The power is given by the specialization.
� The units data transfer has to be addressed.
� The scheduling has to be addressed.

Mirko Mariotti Go, hardware, Go ! October 22, 2018 5/42



Technological Background Architectures

Computer Architectures
Multi-core and Heterogeneous

Today’s computer architecture are:

� Multi-core,Two or more independent actual processing
units execute multiple instructions at the same time.
� The power is given by the number of cores.
� Parallelism has to be addressed.

� Heterogeneous, di�erent types of processing units.
� Cell, GPU, Parallela, TPU.
� The power is given by the specialization.
� The units data transfer has to be addressed.
� The scheduling has to be addressed.

Mirko Mariotti Go, hardware, Go ! October 22, 2018 5/42



Technological Background Architectures

Computer Architectures
Multi-core and Heterogeneous

Today’s computer architecture are:

� Multi-core,Two or more independent actual processing
units execute multiple instructions at the same time.
� The power is given by the number of cores.
� Parallelism has to be addressed.

� Heterogeneous, di�erent types of processing units.
� Cell, GPU, Parallela, TPU.
� The power is given by the specialization.
� The units data transfer has to be addressed.
� The scheduling has to be addressed.

Mirko Mariotti Go, hardware, Go ! October 22, 2018 5/42



Technological Background Architectures

Computer Architectures
Multi-core and Heterogeneous

Today’s computer architecture are:

� Multi-core,Two or more independent actual processing
units execute multiple instructions at the same time.
� The power is given by the number of cores.
� Parallelism has to be addressed.

� Heterogeneous, di�erent types of processing units.
� Cell, GPU, Parallela, TPU.
� The power is given by the specialization.
� The units data transfer has to be addressed.
� The scheduling has to be addressed.

Mirko Mariotti Go, hardware, Go ! October 22, 2018 5/42



Technological Background Architectures

Computer Architectures
Multi-core and Heterogeneous

Today’s computer architecture are:

� Multi-core,Two or more independent actual processing
units execute multiple instructions at the same time.
� The power is given by the number of cores.
� Parallelism has to be addressed.

� Heterogeneous, di�erent types of processing units.
� Cell, GPU, Parallela, TPU.
� The power is given by the specialization.
� The units data transfer has to be addressed.
� The scheduling has to be addressed.

Mirko Mariotti Go, hardware, Go ! October 22, 2018 5/42



Technological Background Architectures

Computer Architectures
Multi-core and Heterogeneous

Today’s computer architecture are:

� Multi-core,Two or more independent actual processing
units execute multiple instructions at the same time.
� The power is given by the number of cores.
� Parallelism has to be addressed.

� Heterogeneous, di�erent types of processing units.
� Cell, GPU, Parallela, TPU.
� The power is given by the specialization.
� The units data transfer has to be addressed.
� The scheduling has to be addressed.

Mirko Mariotti Go, hardware, Go ! October 22, 2018 5/42



Technological Background Architectures

Computer Architectures
Multi-core and Heterogeneous

Today’s computer architecture are:

� Multi-core,Two or more independent actual processing
units execute multiple instructions at the same time.
� The power is given by the number of cores.
� Parallelism has to be addressed.

� Heterogeneous, di�erent types of processing units.
� Cell, GPU, Parallela, TPU.
� The power is given by the specialization.
� The units data transfer has to be addressed.
� The scheduling has to be addressed.

Mirko Mariotti Go, hardware, Go ! October 22, 2018 5/42



Technological Background Architectures

Computer Architectures
Multi-core and Heterogeneous

Today’s computer architecture are:

� Multi-core,Two or more independent actual processing
units execute multiple instructions at the same time.
� The power is given by the number of cores.
� Parallelism has to be addressed.

� Heterogeneous, di�erent types of processing units.
� Cell, GPU, Parallela, TPU.
� The power is given by the specialization.
� The units data transfer has to be addressed.
� The scheduling has to be addressed.

Mirko Mariotti Go, hardware, Go ! October 22, 2018 5/42



Technological Background Architectures

Computer Architectures
Multi-core and Heterogeneous

Today’s computer architecture are:

� Multi-core,Two or more independent actual processing
units execute multiple instructions at the same time.
� The power is given by the number of cores.
� Parallelism has to be addressed.

� Heterogeneous, di�erent types of processing units.
� Cell, GPU, Parallela, TPU.
� The power is given by the specialization.
� The units data transfer has to be addressed.
� The scheduling has to be addressed.

Mirko Mariotti Go, hardware, Go ! October 22, 2018 5/42



BondMachine The Idea

The BondMachine
The idea

High level source code: Go

Building a new kind of computer architecture (multi-core and
heterogeneous both in cores types and interconnections)
which dynamically adapt to the specific computational

problem rather than be static.

BM architecture Layer

FPGA
Concurrency
and Special-
ization

Mirko Mariotti Go, hardware, Go ! October 22, 2018 6/42



BondMachine The Idea

The BondMachine
The idea

High level source code: Go

Building a new kind of computer architecture (multi-core and
heterogeneous both in cores types and interconnections)
which dynamically adapt to the specific computational

problem rather than be static.

BM architecture Layer

FPGA
Concurrency
and Special-
ization

Mirko Mariotti Go, hardware, Go ! October 22, 2018 6/42



BondMachine The Idea

The BondMachine
The idea

High level source code: Go

Building a new kind of computer architecture (multi-core and
heterogeneous both in cores types and interconnections)
which dynamically adapt to the specific computational

problem rather than be static.

BM architecture Layer

FPGA
Concurrency
and Special-
ization

Mirko Mariotti Go, hardware, Go ! October 22, 2018 6/42



BondMachine The Idea

The BondMachine
The idea

High level source code: Go

Building a new kind of computer architecture (multi-core and
heterogeneous both in cores types and interconnections)
which dynamically adapt to the specific computational

problem rather than be static.

BM architecture Layer

FPGA
Concurrency
and Special-
ization

Mirko Mariotti Go, hardware, Go ! October 22, 2018 6/42



BondMachine The Idea

The BondMachine
The idea

High level source code: Go

Building a new kind of computer architecture (multi-core and
heterogeneous both in cores types and interconnections)
which dynamically adapt to the specific computational

problem rather than be static.

BM architecture Layer

FPGA
Concurrency
and Special-
ization

Mirko Mariotti Go, hardware, Go ! October 22, 2018 6/42



BondMachine Architecture

Introducing the BondMachine (BM)

The BondMachine is a software ecosystem for the dynamic
generation of computer architectures that:

� Are composed by many, possibly hundreds, computing
cores.

� Have very small cores and not necessarily of the same type
(di�erent ISA and ABI).

� Have a not fixed way of interconnecting cores.
� May have some elements shared among cores (for

example channels and shared memories).

Mirko Mariotti Go, hardware, Go ! October 22, 2018 7/42



BondMachine Architecture

Introducing the BondMachine (BM)

The BondMachine is a software ecosystem for the dynamic
generation of computer architectures that:

� Are composed by many, possibly hundreds, computing
cores.

� Have very small cores and not necessarily of the same type
(di�erent ISA and ABI).

� Have a not fixed way of interconnecting cores.
� May have some elements shared among cores (for

example channels and shared memories).

Mirko Mariotti Go, hardware, Go ! October 22, 2018 7/42



BondMachine Architecture

Introducing the BondMachine (BM)

The BondMachine is a software ecosystem for the dynamic
generation of computer architectures that:

� Are composed by many, possibly hundreds, computing
cores.

� Have very small cores and not necessarily of the same type
(di�erent ISA and ABI).

� Have a not fixed way of interconnecting cores.
� May have some elements shared among cores (for

example channels and shared memories).

Mirko Mariotti Go, hardware, Go ! October 22, 2018 7/42



BondMachine Architecture

Introducing the BondMachine (BM)

The BondMachine is a software ecosystem for the dynamic
generation of computer architectures that:

� Are composed by many, possibly hundreds, computing
cores.

� Have very small cores and not necessarily of the same type
(di�erent ISA and ABI).

� Have a not fixed way of interconnecting cores.
� May have some elements shared among cores (for

example channels and shared memories).

Mirko Mariotti Go, hardware, Go ! October 22, 2018 7/42



BondMachine Architecture

Introducing the BondMachine (BM)

The BondMachine is a software ecosystem for the dynamic
generation of computer architectures that:

� Are composed by many, possibly hundreds, computing
cores.

� Have very small cores and not necessarily of the same type
(di�erent ISA and ABI).

� Have a not fixed way of interconnecting cores.
� May have some elements shared among cores (for

example channels and shared memories).

Mirko Mariotti Go, hardware, Go ! October 22, 2018 7/42



BondMachine Architecture

The BondMachine
An example

Mirko Mariotti Go, hardware, Go ! October 22, 2018 8/42



BondMachine Connecting Processors

Connecting Processor (CP)
The computational unit of the BM

The atomic computational unit of a BM is the “connecting
processor” (CP) and has:
� Some general purpose registers of size Rsize.
� Some I/O dedicated registers of size Rsize.
� A set of implemented opcodes chosen among many

available.
� Dedicated ROM and RAM.
� There possible operating modes.

Mirko Mariotti Go, hardware, Go ! October 22, 2018 9/42



BondMachine Connecting Processors

Connecting Processor (CP)
The computational unit of the BM

The atomic computational unit of a BM is the “connecting
processor” (CP) and has:
� Some general purpose registers of size Rsize.
� Some I/O dedicated registers of size Rsize.
� A set of implemented opcodes chosen among many

available.
� Dedicated ROM and RAM.
� There possible operating modes.

Mirko Mariotti Go, hardware, Go ! October 22, 2018 9/42



BondMachine Connecting Processors

Connecting Processor (CP)
The computational unit of the BM

The atomic computational unit of a BM is the “connecting
processor” (CP) and has:
� Some general purpose registers of size Rsize.
� Some I/O dedicated registers of size Rsize.
� A set of implemented opcodes chosen among many

available.
� Dedicated ROM and RAM.
� There possible operating modes.

Mirko Mariotti Go, hardware, Go ! October 22, 2018 9/42



BondMachine Connecting Processors

Connecting Processor (CP)
The computational unit of the BM

The atomic computational unit of a BM is the “connecting
processor” (CP) and has:
� Some general purpose registers of size Rsize.
� Some I/O dedicated registers of size Rsize.
� A set of implemented opcodes chosen among many

available.
� Dedicated ROM and RAM.
� There possible operating modes.

Mirko Mariotti Go, hardware, Go ! October 22, 2018 9/42



BondMachine Connecting Processors

Connecting Processor (CP)
The computational unit of the BM

The atomic computational unit of a BM is the “connecting
processor” (CP) and has:
� Some general purpose registers of size Rsize.
� Some I/O dedicated registers of size Rsize.
� A set of implemented opcodes chosen among many

available.
� Dedicated ROM and RAM.
� There possible operating modes.

Mirko Mariotti Go, hardware, Go ! October 22, 2018 9/42



BondMachine Connecting Processors

Connecting Processor (CP)
The computational unit of the BM

The atomic computational unit of a BM is the “connecting
processor” (CP) and has:
� Some general purpose registers of size Rsize.
� Some I/O dedicated registers of size Rsize.
� A set of implemented opcodes chosen among many

available.
� Dedicated ROM and RAM.
� There possible operating modes.

Mirko Mariotti Go, hardware, Go ! October 22, 2018 9/42



BondMachine Shared Objects

Shared Objects (SO)
The non-computational element of the BM

Alongside CPs, BondMachines include non-computing units
called “Shared Objects” (SO).

Examples of their purposes are:

� Data storage (Memories).
� Message passing.
� CP synchronization.

A single SO can be shared among di�erent CPs. To use it CPs
have special instructions (opcodes) oriented to the specific SO.

Four kind of SO have been developed so far: the Channel,
the Shared Memory, the Barrier and a Pseudo Random
Numbers Generator.
Mirko Mariotti Go, hardware, Go ! October 22, 2018 10/42



BondMachine Shared Objects

Shared Objects (SO)
The non-computational element of the BM

Alongside CPs, BondMachines include non-computing units
called “Shared Objects” (SO).

Examples of their purposes are:

� Data storage (Memories).
� Message passing.
� CP synchronization.

A single SO can be shared among di�erent CPs. To use it CPs
have special instructions (opcodes) oriented to the specific SO.

Four kind of SO have been developed so far: the Channel,
the Shared Memory, the Barrier and a Pseudo Random
Numbers Generator.
Mirko Mariotti Go, hardware, Go ! October 22, 2018 10/42



BondMachine Shared Objects

Shared Objects (SO)
The non-computational element of the BM

Alongside CPs, BondMachines include non-computing units
called “Shared Objects” (SO).

Examples of their purposes are:

� Data storage (Memories).
� Message passing.
� CP synchronization.

A single SO can be shared among di�erent CPs. To use it CPs
have special instructions (opcodes) oriented to the specific SO.

Four kind of SO have been developed so far: the Channel,
the Shared Memory, the Barrier and a Pseudo Random
Numbers Generator.
Mirko Mariotti Go, hardware, Go ! October 22, 2018 10/42



BondMachine Shared Objects

Shared Objects (SO)
The non-computational element of the BM

Alongside CPs, BondMachines include non-computing units
called “Shared Objects” (SO).

Examples of their purposes are:

� Data storage (Memories).
� Message passing.
� CP synchronization.

A single SO can be shared among di�erent CPs. To use it CPs
have special instructions (opcodes) oriented to the specific SO.

Four kind of SO have been developed so far: the Channel,
the Shared Memory, the Barrier and a Pseudo Random
Numbers Generator.
Mirko Mariotti Go, hardware, Go ! October 22, 2018 10/42



BondMachine Shared Objects

Shared Objects (SO)
The non-computational element of the BM

Alongside CPs, BondMachines include non-computing units
called “Shared Objects” (SO).

Examples of their purposes are:

� Data storage (Memories).
� Message passing.
� CP synchronization.

A single SO can be shared among di�erent CPs. To use it CPs
have special instructions (opcodes) oriented to the specific SO.

Four kind of SO have been developed so far: the Channel,
the Shared Memory, the Barrier and a Pseudo Random
Numbers Generator.
Mirko Mariotti Go, hardware, Go ! October 22, 2018 10/42



BondMachine Shared Objects

Shared Objects (SO)
The non-computational element of the BM

Alongside CPs, BondMachines include non-computing units
called “Shared Objects” (SO).

Examples of their purposes are:

� Data storage (Memories).
� Message passing.
� CP synchronization.

A single SO can be shared among di�erent CPs. To use it CPs
have special instructions (opcodes) oriented to the specific SO.

Four kind of SO have been developed so far: the Channel,
the Shared Memory, the Barrier and a Pseudo Random
Numbers Generator.
Mirko Mariotti Go, hardware, Go ! October 22, 2018 10/42



BondMachine Tools

Handle the BM computer architecture
The BM computer architecture is managed by a set of tools to:

� build a specify architecture

� modify a pre-existing architecture

� simulate or emulate the behavior

� Generate the Register Tranfer Code (RTL)

Processor Builder

Selects the single
processor, assem-
bles and disassem-
bles, saves on disk
as JSON, creates the
RTL code of a CP

BondMachine
Builder

Connects CPs and
SOs together in
custom topologies,
loads and saves on
disk as JSON, create
BM’s RTL code

Simulation
Framework

Simulates the be-
haviour, emulates a
BM on a standard
Linux workstation

Mirko Mariotti Go, hardware, Go ! October 22, 2018 11/42



BondMachine Tools

Handle the BM computer architecture
The BM computer architecture is managed by a set of tools to:

� build a specify architecture

� modify a pre-existing architecture

� simulate or emulate the behavior

� Generate the Register Tranfer Code (RTL)

Processor Builder

Selects the single
processor, assem-
bles and disassem-
bles, saves on disk
as JSON, creates the
RTL code of a CP

BondMachine
Builder

Connects CPs and
SOs together in
custom topologies,
loads and saves on
disk as JSON, create
BM’s RTL code

Simulation
Framework

Simulates the be-
haviour, emulates a
BM on a standard
Linux workstation

Mirko Mariotti Go, hardware, Go ! October 22, 2018 11/42



BondMachine Tools

Handle the BM computer architecture
The BM computer architecture is managed by a set of tools to:

� build a specify architecture

� modify a pre-existing architecture

� simulate or emulate the behavior

� Generate the Register Tranfer Code (RTL)

Processor Builder

Selects the single
processor, assem-
bles and disassem-
bles, saves on disk
as JSON, creates the
RTL code of a CP

BondMachine
Builder

Connects CPs and
SOs together in
custom topologies,
loads and saves on
disk as JSON, create
BM’s RTL code

Simulation
Framework

Simulates the be-
haviour, emulates a
BM on a standard
Linux workstation

Mirko Mariotti Go, hardware, Go ! October 22, 2018 11/42



BondMachine Tools

Handle the BM computer architecture
The BM computer architecture is managed by a set of tools to:

� build a specify architecture

� modify a pre-existing architecture

� simulate or emulate the behavior

� Generate the Register Tranfer Code (RTL)

Processor Builder

Selects the single
processor, assem-
bles and disassem-
bles, saves on disk
as JSON, creates the
RTL code of a CP

BondMachine
Builder

Connects CPs and
SOs together in
custom topologies,
loads and saves on
disk as JSON, create
BM’s RTL code

Simulation
Framework

Simulates the be-
haviour, emulates a
BM on a standard
Linux workstation

Mirko Mariotti Go, hardware, Go ! October 22, 2018 11/42



Moulding API and Libraries

Use the BM computer architecture

Mapping specific computational problems to BMs

Symbond

Map symbolic
mathematical
expressoin to BM

Boolbond

Map boolean sys-
tems to BM

Matrixwork

Basic matrix com-
putation

Neuralbond

Map neural net-
works to BM

Evolutive BM

Evolutionary com-
puting to BM

tf2bm

Map TensorFlow
graphs to BM

Mirko Mariotti Go, hardware, Go ! October 22, 2018 12/42



Moulding API and Libraries

Use the BM computer architecture

Mapping specific computational problems to BMs

Symbond

Map symbolic
mathematical
expressoin to BM

Boolbond

Map boolean sys-
tems to BM

Matrixwork

Basic matrix com-
putation

Neuralbond

Map neural net-
works to BM

Evolutive BM

Evolutionary com-
puting to BM

tf2bm

Map TensorFlow
graphs to BM

Mirko Mariotti Go, hardware, Go ! October 22, 2018 12/42



Moulding API and Libraries

Use the BM computer architecture

Mapping specific computational problems to BMs

Symbond

Map symbolic
mathematical
expressoin to BM

Boolbond

Map boolean sys-
tems to BM

Matrixwork

Basic matrix com-
putation

Neuralbond

Map neural net-
works to BM

Evolutive BM

Evolutionary com-
puting to BM

tf2bm

Map TensorFlow
graphs to BM

Mirko Mariotti Go, hardware, Go ! October 22, 2018 12/42



Moulding API and Libraries

Use the BM computer architecture

Mapping specific computational problems to BMs

Symbond

Map symbolic
mathematical
expressoin to BM

Boolbond

Map boolean sys-
tems to BM

Matrixwork

Basic matrix com-
putation

Neuralbond

Map neural net-
works to BM

Evolutive BM

Evolutionary com-
puting to BM

tf2bm

Map TensorFlow
graphs to BM

Mirko Mariotti Go, hardware, Go ! October 22, 2018 12/42



Moulding API and Libraries

Use the BM computer architecture

Mapping specific computational problems to BMs

Symbond

Map symbolic
mathematical
expressoin to BM

Boolbond

Map boolean sys-
tems to BM

Matrixwork

Basic matrix com-
putation

Neuralbond

Map neural net-
works to BM

Evolutive BM

Evolutionary com-
puting to BM

tf2bm

Map TensorFlow
graphs to BM

Mirko Mariotti Go, hardware, Go ! October 22, 2018 12/42



Moulding API and Libraries

Use the BM computer architecture

Mapping specific computational problems to BMs

Symbond

Map symbolic
mathematical
expressoin to BM

Boolbond

Map boolean sys-
tems to BM

Matrixwork

Basic matrix com-
putation

Neuralbond

Map neural net-
works to BM

Evolutive BM

Evolutionary com-
puting to BM

tf2bm

Map TensorFlow
graphs to BM

Mirko Mariotti Go, hardware, Go ! October 22, 2018 12/42



Moulding API and Libraries

Use the BM computer architecture

Mapping specific computational problems to BMs

Symbond

Map symbolic
mathematical
expressoin to BM

Boolbond

Map boolean sys-
tems to BM

Matrixwork

Basic matrix com-
putation

Neuralbond

Map neural net-
works to BM

Evolutive BM

Evolutionary com-
puting to BM

tf2bm

Map TensorFlow
graphs to BM

Mirko Mariotti Go, hardware, Go ! October 22, 2018 12/42



Moulding Bondgo

Bondgo

The major innovation of the BondMachine Project is its
compiler.

Bondgo is the name chosen for the compiler developed for the
BondMachine.

The compiler source language is Go as the name suggest.

Mirko Mariotti Go, hardware, Go ! October 22, 2018 13/42



Moulding Bondgo

Bondgo

Bondgo does something di�erent from standard compilers ...

Mirko Mariotti Go, hardware, Go ! October 22, 2018 14/42



Moulding Bondgo

Bondgo

Bondgo does something di�erent from standard compilers ...

high level GO source

Mirko Mariotti Go, hardware, Go ! October 22, 2018 14/42



Moulding Bondgo

Bondgo

Bondgo does something di�erent from standard compilers ...

high level GO source

assembly file

Compiling

Mirko Mariotti Go, hardware, Go ! October 22, 2018 14/42



Moulding Bondgo

Bondgo

Bondgo does something di�erent from standard compilers ...

high level GO source

assembly file

Compiling

CP specs

Arch generating

Mirko Mariotti Go, hardware, Go ! October 22, 2018 14/42



Moulding Bondgo

Bondgo

Bondgo does something di�erent from standard compilers ...

high level GO source

assembly file

Compiling

CP specs

Arch generating

machine code

Assembling

Mirko Mariotti Go, hardware, Go ! October 22, 2018 14/42



Moulding Bondgo

Bondgo

Bondgo does something di�erent from standard compilers ...

high level GO source

assembly file

Compiling

CP specs

Arch generating

machine code

Assembling

Processor implementation

Mirko Mariotti Go, hardware, Go ! October 22, 2018 14/42



Moulding Bondgo

Bondgo

Bondgo does something di�erent from standard compilers ...

high level GO source

assembly file

Compiling

CP specs

Arch generating

machine code

Assembling

Processor implementation

Mirko Mariotti Go, hardware, Go ! October 22, 2018 14/42



Moulding Bondgo

Bondgo
A first example

counter go source
package main

import (
"bondgo"

)

func main() {
var outgoing bondgo.Output
var reg_int uint8
outgoing =

bondgo.Make(bondgo.Output , 3)
reg_int = 0
for {

bondgo.IOWrite(outgoing ,
reg_int)
reg_int ++

}
}

bondgo –input-file counter.go
-mpm

BM JSON rapresentation

counter asm
clr r0
rset r1 0
cpy r0 r1
cpy r1 r0
r2o r1 o0
inc r0
j 3

bondmachine tool

BM HDL code

FPGA

procbuilder tool

Binary

Mirko Mariotti Go, hardware, Go ! October 22, 2018 15/42



Moulding Bondgo

Bondgo
A first example

counter go source
package main

import (
"bondgo"

)

func main() {
var outgoing bondgo.Output
var reg_int uint8
outgoing =

bondgo.Make(bondgo.Output , 3)
reg_int = 0
for {

bondgo.IOWrite(outgoing ,
reg_int)
reg_int ++

}
}

bondgo –input-file counter.go
-mpm

BM JSON rapresentation

counter asm
clr r0
rset r1 0
cpy r0 r1
cpy r1 r0
r2o r1 o0
inc r0
j 3

bondmachine tool

BM HDL code

FPGA

procbuilder tool

Binary

Mirko Mariotti Go, hardware, Go ! October 22, 2018 15/42



Moulding Bondgo

Bondgo
A first example

counter go source
package main

import (
"bondgo"

)

func main() {
var outgoing bondgo.Output
var reg_int uint8
outgoing =

bondgo.Make(bondgo.Output , 3)
reg_int = 0
for {

bondgo.IOWrite(outgoing ,
reg_int)
reg_int ++

}
}

bondgo –input-file counter.go
-mpm

BM JSON rapresentation

counter asm
clr r0
rset r1 0
cpy r0 r1
cpy r1 r0
r2o r1 o0
inc r0
j 3

bondmachine tool

BM HDL code

FPGA

procbuilder tool

Binary

Mirko Mariotti Go, hardware, Go ! October 22, 2018 15/42



Moulding Bondgo

Bondgo
A first example

counter go source
package main

import (
"bondgo"

)

func main() {
var outgoing bondgo.Output
var reg_int uint8
outgoing =

bondgo.Make(bondgo.Output , 3)
reg_int = 0
for {

bondgo.IOWrite(outgoing ,
reg_int)
reg_int ++

}
}

bondgo –input-file counter.go
-mpm

BM JSON rapresentation

counter asm
clr r0
rset r1 0
cpy r0 r1
cpy r1 r0
r2o r1 o0
inc r0
j 3

bondmachine tool

BM HDL code

FPGA

procbuilder tool

Binary

Mirko Mariotti Go, hardware, Go ! October 22, 2018 15/42



Moulding Bondgo

Bondgo
A first example

counter go source
package main

import (
"bondgo"

)

func main() {
var outgoing bondgo.Output
var reg_int uint8
outgoing =

bondgo.Make(bondgo.Output , 3)
reg_int = 0
for {

bondgo.IOWrite(outgoing ,
reg_int)
reg_int ++

}
}

bondgo –input-file counter.go
-mpm

BM JSON rapresentation

counter asm
clr r0
rset r1 0
cpy r0 r1
cpy r1 r0
r2o r1 o0
inc r0
j 3

bondmachine tool

BM HDL code

FPGA

procbuilder tool

Binary

Mirko Mariotti Go, hardware, Go ! October 22, 2018 15/42



Moulding Bondgo

Bondgo
A first example

counter go source
package main

import (
"bondgo"

)

func main() {
var outgoing bondgo.Output
var reg_int uint8
outgoing =

bondgo.Make(bondgo.Output , 3)
reg_int = 0
for {

bondgo.IOWrite(outgoing ,
reg_int)
reg_int ++

}
}

bondgo –input-file counter.go
-mpm

BM JSON rapresentation

counter asm
clr r0
rset r1 0
cpy r0 r1
cpy r1 r0
r2o r1 o0
inc r0
j 3

bondmachine tool

BM HDL code

FPGA

procbuilder tool

Binary

Mirko Mariotti Go, hardware, Go ! October 22, 2018 15/42



Moulding Bondgo

Bondgo
A first example

counter go source
package main

import (
"bondgo"

)

func main() {
var outgoing bondgo.Output
var reg_int uint8
outgoing =

bondgo.Make(bondgo.Output , 3)
reg_int = 0
for {

bondgo.IOWrite(outgoing ,
reg_int)
reg_int ++

}
}

bondgo –input-file counter.go
-mpm

BM JSON rapresentation

counter asm
clr r0
rset r1 0
cpy r0 r1
cpy r1 r0
r2o r1 o0
inc r0
j 3

bondmachine tool

BM HDL code

FPGA

procbuilder tool

Binary

Mirko Mariotti Go, hardware, Go ! October 22, 2018 15/42



Moulding Bondgo

Bondgo
A first example

counter go source
package main

import (
"bondgo"

)

func main() {
var outgoing bondgo.Output
var reg_int uint8
outgoing =

bondgo.Make(bondgo.Output , 3)
reg_int = 0
for {

bondgo.IOWrite(outgoing ,
reg_int)
reg_int ++

}
}

bondgo –input-file counter.go
-mpm

BM JSON rapresentation

counter asm
clr r0
rset r1 0
cpy r0 r1
cpy r1 r0
r2o r1 o0
inc r0
j 3

bondmachine tool

BM HDL code

FPGA

procbuilder tool

Binary

Mirko Mariotti Go, hardware, Go ! October 22, 2018 15/42



Moulding Bondgo

Bondgo
A first example

counter go source
package main

import (
"bondgo"

)

func main() {
var outgoing bondgo.Output
var reg_int uint8
outgoing =

bondgo.Make(bondgo.Output , 3)
reg_int = 0
for {

bondgo.IOWrite(outgoing ,
reg_int)
reg_int ++

}
}

bondgo –input-file counter.go
-mpm

BM JSON rapresentation

counter asm
clr r0
rset r1 0
cpy r0 r1
cpy r1 r0
r2o r1 o0
inc r0
j 3

bondmachine tool

BM HDL code

FPGA

procbuilder tool

Binary

Mirko Mariotti Go, hardware, Go ! October 22, 2018 15/42



Moulding Bondgo

Bondgo
A first example

counter go source
package main

import (
"bondgo"

)

func main() {
var outgoing bondgo.Output
var reg_int uint8
outgoing =

bondgo.Make(bondgo.Output , 3)
reg_int = 0
for {

bondgo.IOWrite(outgoing ,
reg_int)
reg_int ++

}
}

bondgo –input-file counter.go
-mpm

BM JSON rapresentation

counter asm
clr r0
rset r1 0
cpy r0 r1
cpy r1 r0
r2o r1 o0
inc r0
j 3

bondmachine tool

BM HDL code

FPGA

procbuilder tool

Binary

Mirko Mariotti Go, hardware, Go ! October 22, 2018 15/42



Moulding Bondgo

Bondgo

... bondgo may not only create the binaries, but also the CP
architecture, and ...

Mirko Mariotti Go, hardware, Go ! October 22, 2018 16/42



Moulding Bondgo

Bondgo

... it can do even much more interesting things when
compiling concurrent programs.

Mirko Mariotti Go, hardware, Go ! October 22, 2018 17/42



Moulding Bondgo

Bondgo

... it can do even much more interesting things when
compiling concurrent programs.

high level GO source

Mirko Mariotti Go, hardware, Go ! October 22, 2018 17/42



Moulding Bondgo

Bondgo

... it can do even much more interesting things when
compiling concurrent programs.

high level GO source

assembly CP 1

assembly CP 2assembly CP 3assembly CP 4assembly CP ...

assembly CP N

Compiling

Mirko Mariotti Go, hardware, Go ! October 22, 2018 17/42



Moulding Bondgo

Bondgo

... it can do even much more interesting things when
compiling concurrent programs.

high level GO source

assembly CP 1

assembly CP 2assembly CP 3assembly CP 4assembly CP ...

assembly CP N

Compiling

CP 1 specs

CP 2

CP 3

CP 4

CP ...

CP N

Archs generating

Mirko Mariotti Go, hardware, Go ! October 22, 2018 17/42



Moulding Bondgo

Bondgo

... it can do even much more interesting things when
compiling concurrent programs.

high level GO source

assembly CP 1

assembly CP 2assembly CP 3assembly CP 4assembly CP ...

assembly CP N

Compiling

CP 1 specs

CP 2

CP 3

CP 4

CP ...

CP N

Archs generating

Asm and Binaries

Mirko Mariotti Go, hardware, Go ! October 22, 2018 17/42



Moulding Bondgo

Bondgo

... it can do even much more interesting things when
compiling concurrent programs.

high level GO source

assembly CP 1

assembly CP 2assembly CP 3assembly CP 4assembly CP ...

assembly CP N

Compiling

CP 1 specs

CP 2

CP 3

CP 4

CP ...

CP N

Archs generating

Asm and Binaries
Interconnections

Mirko Mariotti Go, hardware, Go ! October 22, 2018 17/42



Moulding Bondgo

Bondgo

... it can do even much more interesting things when
compiling concurrent programs.

high level GO source

assembly CP 1

assembly CP 2assembly CP 3assembly CP 4assembly CP ...

assembly CP N

Compiling

CP 1 specs

CP 2

CP 3

CP 4

CP ...

CP N

Archs generating

Asm and Binaries
BondMachine

Mirko Mariotti Go, hardware, Go ! October 22, 2018 17/42



Moulding Bondgo

Bondgo
A multi-core example

multi-core counter
package main

import (
"bondgo"

)

func pong() {
var in0 bondgo.Input
var out0 bondgo.Output
in0 = bondgo.Make(bondgo.Input , 3)
out0 = bondgo.Make(bondgo.Output , 5)
for {

bondgo.IOWrite(out0 , bondgo.IORead(in0)+1)
}

}

func main() {
var in0 bondgo.Input
var out0 bondgo.Output
in0 = bondgo.Make(bondgo.Input , 5)
out0 = bondgo.Make(bondgo.Output , 3)

device_0:
go pong()
for {

bondgo.IOWrite(out0 , bondgo.IORead(in0))
}

}

Mirko Mariotti Go, hardware, Go ! October 22, 2018 18/42



Moulding Bondgo

Bondgo
A multi-core example

Compiling the code with the bondgo compiler:

bondgo -input-file ds.go -mpm

The toolchain perform the following steps:
� Map the two goroutines to two hardware cores.
� Creates two types of core, each one optimized to execute

the assigned goroutine.
� Creates the two binaries.
� Connected the two core as inferred from the source code,

using special IO registers.
The result is a multicore BondMachine:

Mirko Mariotti Go, hardware, Go ! October 22, 2018 19/42



Moulding Bondgo

Bondgo
A multi-core example

Mirko Mariotti Go, hardware, Go ! October 22, 2018 20/42



Moulding Bondgo

Compiling Architectures

One of the most important result
The architecture creation is a part of the compilation process.

Mirko Mariotti Go, hardware, Go ! October 22, 2018 21/42



Moulding Bondgo

Bondgo
Go in hardware

Bondgo implements a sort of “Go in hardware”.

High level Go source code is directly mapped to
interconnected processors without Operating Systems or

runtimes.

Goroutines Cores

Channels Channel SOs
Variables (local) CP RAM segments

Variables (by val) CH messages or IO regs

Variables (by ref) Shared RAM segments

Mirko Mariotti Go, hardware, Go ! October 22, 2018 22/42



Moulding Bondgo

Bondgo
Go in hardware

Bondgo implements a sort of “Go in hardware”.

High level Go source code is directly mapped to
interconnected processors without Operating Systems or

runtimes.

Goroutines Cores

Channels Channel SOs
Variables (local) CP RAM segments

Variables (by val) CH messages or IO regs

Variables (by ref) Shared RAM segments

Mirko Mariotti Go, hardware, Go ! October 22, 2018 22/42



Moulding Bondgo

Bondgo
Go in hardware

Bondgo implements a sort of “Go in hardware”.

High level Go source code is directly mapped to
interconnected processors without Operating Systems or

runtimes.

Goroutines Cores

Channels Channel SOs
Variables (local) CP RAM segments

Variables (by val) CH messages or IO regs

Variables (by ref) Shared RAM segments

Mirko Mariotti Go, hardware, Go ! October 22, 2018 22/42



Moulding Bondgo

Bondgo
Go in hardware

Bondgo implements a sort of “Go in hardware”.

High level Go source code is directly mapped to
interconnected processors without Operating Systems or

runtimes.

Goroutines Cores

Channels Channel SOs
Variables (local) CP RAM segments

Variables (by val) CH messages or IO regs

Variables (by ref) Shared RAM segments

Mirko Mariotti Go, hardware, Go ! October 22, 2018 22/42



Moulding Bondgo

Bondgo
Go in hardware

Bondgo implements a sort of “Go in hardware”.

High level Go source code is directly mapped to
interconnected processors without Operating Systems or

runtimes.

Goroutines Cores

Channels Channel SOs
Variables (local) CP RAM segments

Variables (by val) CH messages or IO regs

Variables (by ref) Shared RAM segments

Mirko Mariotti Go, hardware, Go ! October 22, 2018 22/42



Moulding Bondgo

Bondgo
Go in hardware

Bondgo implements a sort of “Go in hardware”.

High level Go source code is directly mapped to
interconnected processors without Operating Systems or

runtimes.

Goroutines Cores

Channels Channel SOs
Variables (local) CP RAM segments

Variables (by val) CH messages or IO regs

Variables (by ref) Shared RAM segments

Mirko Mariotti Go, hardware, Go ! October 22, 2018 22/42



Moulding Bondgo

Bondgo
Go in hardware

Bondgo implements a sort of “Go in hardware”.

High level Go source code is directly mapped to
interconnected processors without Operating Systems or

runtimes.

Goroutines Cores

Channels Channel SOs
Variables (local) CP RAM segments

Variables (by val) CH messages or IO regs

Variables (by ref) Shared RAM segments

Mirko Mariotti Go, hardware, Go ! October 22, 2018 22/42



Moulding Bondgo

Bondgo
Go in hardware

Bondgo implements a sort of “Go in hardware”.

High level Go source code is directly mapped to
interconnected processors without Operating Systems or

runtimes.

Goroutines Cores

Channels Channel SOs
Variables (local) CP RAM segments

Variables (by val) CH messages or IO regs

Variables (by ref) Shared RAM segments

Mirko Mariotti Go, hardware, Go ! October 22, 2018 22/42



Moulding Bondgo

Bondgo
Go in hardware

Bondgo implements a sort of “Go in hardware”.

High level Go source code is directly mapped to
interconnected processors without Operating Systems or

runtimes.

Goroutines Cores

Channels Channel SOs
Variables (local) CP RAM segments

Variables (by val) CH messages or IO regs

Variables (by ref) Shared RAM segments

Mirko Mariotti Go, hardware, Go ! October 22, 2018 22/42



Moulding Bondgo

Bondgo
Go in hardware

Bondgo implements a sort of “Go in hardware”.

High level Go source code is directly mapped to
interconnected processors without Operating Systems or

runtimes.

Goroutines Cores

Channels Channel SOs
Variables (local) CP RAM segments

Variables (by val) CH messages or IO regs

Variables (by ref) Shared RAM segments

Mirko Mariotti Go, hardware, Go ! October 22, 2018 22/42



Moulding Bondgo

Bondgo
Go in hardware

Bondgo implements a sort of “Go in hardware”.

High level Go source code is directly mapped to
interconnected processors without Operating Systems or

runtimes.

Goroutines Cores

Channels Channel SOs
Variables (local) CP RAM segments

Variables (by val) CH messages or IO regs

Variables (by ref) Shared RAM segments

Mirko Mariotti Go, hardware, Go ! October 22, 2018 22/42



Moulding Bondgo

Bondgo
An example

bondgo stream processing example
package main

import (
"bondgo"

)

func streamprocessor(a *[]uint8 , b *[]uint8 ,
c *[]uint8 , gid uint8) {
(*c)[gid] = (*a)[gid] + (*b)[gid]

}
func main() {

a := make ([]uint8 , 256)
b := make ([]uint8 , 256)
c := make ([]uint8 , 256)

// ... some a and b values fill

for i := 0; i < 256; i++ {
go streamprocessor (&a, &b, &c, uint8(i))

}
}

The compilation of this example results in the creation of a 257 CPs where 256 are the stream processors
executing the code in the function called streamprocessor, and one is the coordinating CP. Each stream
processor is optimized and capable only to make additions since it is the only operation requested by
the source code. The three slices created on the main function are passed by reference to the Goroutines
then a shared RAM is created by the Bondgo compiler available to the generated CPs.

Mirko Mariotti Go, hardware, Go ! October 22, 2018 23/42



Hardware

Hardware implementation
FPGA

The RTL code for the BondMachine is written in Verilog and
System Verilog, and has been tested on these devices/system:
� Digilent Basys3 - Xilinx Artix-7 - Vivado.
� Kintex7 Evaluation Board - Vivado.
� Digilent Zedboard - Xilinx Zynq 7020 - Vivado.
� Linux - Iverilog.
� Terasic De10nano - Intel Cyclone V - Quartus

Within the project other firmwares have been written or tested:

� Microchip ENC28J60 Ethernet interface controller.
� Microchip ENC424J600 10/100 Base-T Ethernet interface

controller.
� ESP8266 Wi-Fi chip.

Mirko Mariotti Go, hardware, Go ! October 22, 2018 24/42



Prototype

The Prototype

The project has been selected for the participation at
MakerFaire 2016 Rome (The Europen Edition) and a prototype

has been assembled and presented.

First run:
https://youtube.com/embed/hukTrGxTb7A

Mirko Mariotti Go, hardware, Go ! October 22, 2018 25/42

https://youtube.com/embed/hukTrGxTb7A


Prototype

Toolchains

A set of toolchains allow the build and the direct deploy to a
target device of BondMachines.

Bondgo Toolchain example
A file local.mk contains references to the source code as well
all the build necessities.
make bondmachine creates the JSON representation of the
BM and assemble its code.
make show displays a graphical representation of the BM.
make simulate start a simulation.
make videosim create a simulation video.
make flash the device into the destination target.

Mirko Mariotti Go, hardware, Go ! October 22, 2018 26/42



Clustering

BondMachine Clustering

So far we saw:

� An user friendly approach to create processors (single
core).

� Optimizing a single device to support intricate
computational work-flows (multi-cores) over an
heterogeneous layer.

Interconnected BondMachines
What if we could extend the this layer to multiple

interconnected devices ?

Mirko Mariotti Go, hardware, Go ! October 22, 2018 27/42



Clustering

BondMachine Clustering

So far we saw:

� An user friendly approach to create processors (single
core).

� Optimizing a single device to support intricate
computational work-flows (multi-cores) over an
heterogeneous layer.

Interconnected BondMachines
What if we could extend the this layer to multiple

interconnected devices ?

Mirko Mariotti Go, hardware, Go ! October 22, 2018 27/42



Clustering

BondMachine Clustering

So far we saw:

� An user friendly approach to create processors (single
core).

� Optimizing a single device to support intricate
computational work-flows (multi-cores) over an
heterogeneous layer.

Interconnected BondMachines
What if we could extend the this layer to multiple

interconnected devices ?

Mirko Mariotti Go, hardware, Go ! October 22, 2018 27/42



Clustering

BondMachine Clustering

So far we saw:

� An user friendly approach to create processors (single
core).

� Optimizing a single device to support intricate
computational work-flows (multi-cores) over an
heterogeneous layer.

Interconnected BondMachines
What if we could extend the this layer to multiple

interconnected devices ?

Mirko Mariotti Go, hardware, Go ! October 22, 2018 27/42



Clustering

BondMachine Clustering

The same logic existing among CP have been extended among
di�erent BondMachines organized in clusters.

Protocols, one ethernet called etherbond and one using UDP
called udpbond have been created for the purpose.

FPGA based BondMachines, standard Linux Workstations,
Emulated BondMachines might join a cluster an contribute to

a single distributed computational problem.

Mirko Mariotti Go, hardware, Go ! October 22, 2018 28/42



Clustering

BondMachine Clustering

The same logic existing among CP have been extended among
di�erent BondMachines organized in clusters.

Protocols, one ethernet called etherbond and one using UDP
called udpbond have been created for the purpose.

FPGA based BondMachines, standard Linux Workstations,
Emulated BondMachines might join a cluster an contribute to

a single distributed computational problem.

Mirko Mariotti Go, hardware, Go ! October 22, 2018 28/42



Clustering

BondMachine Clustering

The same logic existing among CP have been extended among
di�erent BondMachines organized in clusters.

Protocols, one ethernet called etherbond and one using UDP
called udpbond have been created for the purpose.

FPGA based BondMachines, standard Linux Workstations,
Emulated BondMachines might join a cluster an contribute to

a single distributed computational problem.

Mirko Mariotti Go, hardware, Go ! October 22, 2018 28/42



Clustering

BondMachine Clustering

Mirko Mariotti Go, hardware, Go ! October 22, 2018 29/42



Clustering

BondMachine Clustering
A distributed example

distributed counter
package main

import (
"bondgo"

)

func pong() {
var in0 bondgo.Input
var out0 bondgo.Output
in0 = bondgo.Make(bondgo.Input , 3)
out0 = bondgo.Make(bondgo.Output , 5)
for {

bondgo.IOWrite(out0 , bondgo.IORead(in0)+1)
}

}

func main() {
var in0 bondgo.Input
var out0 bondgo.Output
in0 = bondgo.Make(bondgo.Input , 5)
out0 = bondgo.Make(bondgo.Output , 3)

device_1:
go pong()
for {

bondgo.IOWrite(out0 , bondgo.IORead(in0))
}

}

Mirko Mariotti Go, hardware, Go ! October 22, 2018 30/42



Clustering

BondMachine Clustering
A distributed example

Mirko Mariotti Go, hardware, Go ! October 22, 2018 31/42



Clustering

BondMachine Clustering
A distributed example

The result is:
https://youtube.com/embed/g9xYHK0zca4

A general result
Parts of the system can be redeployed among di�erent devices
without changing the system behavior (only the performances).

Mirko Mariotti Go, hardware, Go ! October 22, 2018 32/42

https://youtube.com/embed/g9xYHK0zca4


Clustering

BondMachine Clustering
Results

Results
� User can deploy an entire HW/SW cluster starting from a

code written in Go.

� Workstation with emulated BondMachines, workstation
with etherbond drivers, standalone BondMachines (FPGA)
may join these clusters.

Mirko Mariotti Go, hardware, Go ! October 22, 2018 33/42



Clustering

BondMachine Clustering
Results

Results
� User can deploy an entire HW/SW cluster starting from a

code written in Go.

� Workstation with emulated BondMachines, workstation
with etherbond drivers, standalone BondMachines (FPGA)
may join these clusters.

Mirko Mariotti Go, hardware, Go ! October 22, 2018 33/42



Project History

Project History

� May 2016 - Idea presented at INFN-computing and
Networking Commission Workshop 2016.

� September 2016 - The first prototype is built.
� October 2016 - It is Selected and the prototype is

presented at “Makerfaire 2016 Rome (The European
edition)”.

� November 2016 - Presented at “Umbria Business Match
2016”.

� March 2017 - First tests for Physics applications.
� November 2017 - Presented at “Umbria Business Match

2017”.
� December 2107 - Submitted at InnovateFPGA 2018

Mirko Mariotti Go, hardware, Go ! October 22, 2018 34/42



Project History

Project History

� May 2016 - Idea presented at INFN-computing and
Networking Commission Workshop 2016.

� September 2016 - The first prototype is built.
� October 2016 - It is Selected and the prototype is

presented at “Makerfaire 2016 Rome (The European
edition)”.

� November 2016 - Presented at “Umbria Business Match
2016”.

� March 2017 - First tests for Physics applications.
� November 2017 - Presented at “Umbria Business Match

2017”.
� December 2107 - Submitted at InnovateFPGA 2018

Mirko Mariotti Go, hardware, Go ! October 22, 2018 34/42



Project History

Project History

� May 2016 - Idea presented at INFN-computing and
Networking Commission Workshop 2016.

� September 2016 - The first prototype is built.
� October 2016 - It is Selected and the prototype is

presented at “Makerfaire 2016 Rome (The European
edition)”.

� November 2016 - Presented at “Umbria Business Match
2016”.

� March 2017 - First tests for Physics applications.
� November 2017 - Presented at “Umbria Business Match

2017”.
� December 2107 - Submitted at InnovateFPGA 2018

Mirko Mariotti Go, hardware, Go ! October 22, 2018 34/42



Project History

Project History
InnovateFPGA 2018

� Feb 2018 - Reached the EMEA Semifinal.
� Jun 2018 - Reached the EMEA Regional final.
� Jul 2018 - EMEA Silver Award, Reached the Grand Final.
� Aug 2018 - Presented at Intel Campus, Santa Jose (CA) .
� Aug 2018 - Won the Iron Award in the Grand Final.

Mirko Mariotti Go, hardware, Go ! October 22, 2018 35/42



Project History

Project History
InnovateFPGA 2018

� Feb 2018 - Reached the EMEA Semifinal.
� Jun 2018 - Reached the EMEA Regional final.
� Jul 2018 - EMEA Silver Award, Reached the Grand Final.
� Aug 2018 - Presented at Intel Campus, Santa Jose (CA) .
� Aug 2018 - Won the Iron Award in the Grand Final.

Mirko Mariotti Go, hardware, Go ! October 22, 2018 36/42



Project History

Project History
InnovateFPGA 2018

� Feb 2018 - Reached the EMEA Semifinal.
� Jun 2018 - Reached the EMEA Regional final.
� Jul 2018 - EMEA Silver Award, Reached the Grand Final.
� Aug 2018 - Presented at Intel Campus, Santa Jose (CA) .
� Aug 2018 - Won the Iron Award in the Grand Final.

Mirko Mariotti Go, hardware, Go ! October 22, 2018 37/42



Project History

Project History
InnovateFPGA 2018

� Feb 2018 - Reached the EMEA Semifinal.
� Jun 2018 - Reached the EMEA Regional final.
� Jul 2018 - EMEA Silver Award, Reached the Grand Final.
� Aug 2018 - Presented at Intel Campus, Santa Jose (CA) .
� Aug 2018 - Won the Iron Award in the Grand Final.

Mirko Mariotti Go, hardware, Go ! October 22, 2018 38/42



Project History

Project History
InnovateFPGA 2018

� Feb 2018 - Reached the EMEA Semifinal.
� Jun 2018 - Reached the EMEA Regional final.
� Jul 2018 - EMEA Silver Award, Reached the Grand Final.
� Aug 2018 - Presented at Intel Campus, Santa Jose (CA) .
� Aug 2018 - Won the Iron Award in the Grand Final.

Mirko Mariotti Go, hardware, Go ! October 22, 2018 39/42



Conclusions

Conclusions

The BondMachine is a new kind of computing device made possible
in practice only by the emerging of new re-programmable hardware
technologies such as FPGA.
Keeping the registermachine abstraction it is possible to use language
like Go, removing the need of having a general purpose architecture.
The result of this process is the construction of a computer architec-
ture that is not anymore a static constraint where computing occurs
but its creation becomes a part of the computing process, gaining
computing power and flexibility.
Over this abstraction is it possible to create a full computing Ecosys-
tem.

Mirko Mariotti Go, hardware, Go ! October 22, 2018 40/42



Future work

Future work

� The project is a prototype.
� Include new processor shared objects and currently

unsupported opcodes.
� Extend the compiler to include more data structures.
� Improve the networking including new interconnection

firmwares.
� Work on BondMachine as accelerators.
� What would an OS for BondMachines look like ?

Mirko Mariotti Go, hardware, Go ! October 22, 2018 41/42



Future work

Future work

� The project is a prototype.
� Include new processor shared objects and currently

unsupported opcodes.
� Extend the compiler to include more data structures.
� Improve the networking including new interconnection

firmwares.
� Work on BondMachine as accelerators.
� What would an OS for BondMachines look like ?

Mirko Mariotti Go, hardware, Go ! October 22, 2018 41/42



Future work

Future work

� The project is a prototype.
� Include new processor shared objects and currently

unsupported opcodes.
� Extend the compiler to include more data structures.
� Improve the networking including new interconnection

firmwares.
� Work on BondMachine as accelerators.
� What would an OS for BondMachines look like ?

Mirko Mariotti Go, hardware, Go ! October 22, 2018 41/42



Future work

Future work

� The project is a prototype.
� Include new processor shared objects and currently

unsupported opcodes.
� Extend the compiler to include more data structures.
� Improve the networking including new interconnection

firmwares.
� Work on BondMachine as accelerators.
� What would an OS for BondMachines look like ?

Mirko Mariotti Go, hardware, Go ! October 22, 2018 41/42



Future work

Future work

� The project is a prototype.
� Include new processor shared objects and currently

unsupported opcodes.
� Extend the compiler to include more data structures.
� Improve the networking including new interconnection

firmwares.
� Work on BondMachine as accelerators.
� What would an OS for BondMachines look like ?

Mirko Mariotti Go, hardware, Go ! October 22, 2018 41/42



Future work

Future work

� The project is a prototype.
� Include new processor shared objects and currently

unsupported opcodes.
� Extend the compiler to include more data structures.
� Improve the networking including new interconnection

firmwares.
� Work on BondMachine as accelerators.
� What would an OS for BondMachines look like ?

Mirko Mariotti Go, hardware, Go ! October 22, 2018 41/42



Future work

If you have question/curiosity/interest for joining the project:
Mirko Mariotti

mirko.mariotti@unipg.it
http://bondmachine.fisica.unipg.it

Mirko Mariotti Go, hardware, Go ! October 22, 2018 42/42

https://www.mirkomariotti.it
http://bondmachine.fisica.unipg.it

	Introduction
	Technological Background
	Programmable Logic
	Architectures

	BondMachine
	The Idea
	Architecture
	Connecting Processors
	Shared Objects
	Tools

	Moulding
	API and Libraries
	Bondgo

	Hardware
	Prototype
	Prototype
	Clustering
	Project History
	Conclusions
	Future work

