

Machine Learning on FPGA

Mirko Mariotti ^{1,2} Giulio Bianchini ¹ Loriano Storchi ^{3,2} Giacomo Surace ² Daniele Spiga ²

¹Dipartimento di Fisica e Geologia, Universitá degli Studi di Perugia

²INFN sezione di Perugia

³Dipartimento di Farmacia, Universitá degli Studi G. D'Annunzio

Outline

- 1 Introduction
 Challenges
 FPGA
 HDL workflow
 HLS Workflow
 Concepts
 Cloud
- 2 The BondMachine project
 Architectures handling
 Architectures molding
 Bondgo
 Basm
 API

- 3 Misc Project timeline
- 4 Machine Learning
 Train
 BondMachine creation
 Simulation
 Accelerator
 Benchmark
- 5 Optimizations
- 6 Conclusions and Future directions
 Conclusions
 Ongoing
 Future

Hand-on sessions

Some topic will have a hands-on sessions, you can either:

- Install the tools in you laptop following quickstart at http://bondmachine.fisica.unipg.it/docs
- Use the container of the hackaton

After that just clone the examples repository:

git clone https://github.com/BondMachineHQ/bmexamples.git

(Introduction)

- 1 Introduction
 Challenges
 FPGA
 HDL workflow
 HLS Workflow
 Concepts
 Cloud
- 2 The BondMachine project
 Architectures handling
 Architectures molding
 Bondgo
 Basm

- 3 Misc Project timeline
 - 4 Machine Learnin
 Train
 BondMachine creation
 Simulation
 Accelerator
 - 5 Optimizations
 - 6 Conclusions and Future directions
 Conclusions
 Ongoing

Current challenges in computing

Von Neumann Bottleneck:

New computational problems show that current architectural models has to be improved or changed to address future payloads.

Energy Efficient computation:

Not wasting "resources" (silicon, time, energy, instructions). Using the right resource for the specific case

Edge/Fog/Cloud Computing:
 Making the computation where it make sense
 Avoiding the transfer of unnecessary data
 Creating consistent interfaces for distributed systems

Current challenges in computing

- Von Neumann Bottleneck:
 New computational problems show that current architectural models has to be improved or changed to address future payloads.
- Energy Efficient computation:
 Not wasting "resources" (silicon, time, energy, instructions).
 Using the right resource for the specific case
- Edge/Fog/Cloud Computing: Making the computation where it make sense Avoiding the transfer of unnecessary data Creating consistent interfaces for distributed systems

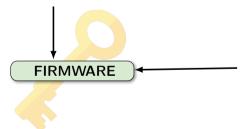
Current challenges in computing

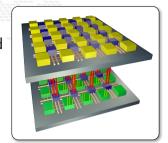
- Von Neumann Bottleneck:

 New computational problems show that current architectural models has to be improved or changed to address future payloads.
- Energy Efficient computation:Not wasting "resources" (silicon, time, energy, instructions).Using the right resource for the specific case
- Edge/Fog/Cloud Computing:
 Making the computation where it make sense
 Avoiding the transfer of unnecessary data
 Creating consistent interfaces for distributed systems

A field programmable gate array (FPGA) is an integrated circuit whose logic is re-programmable.

- Parallel computing
- Highly specialized
- Energy efficient

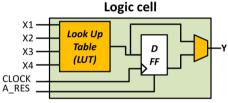




- Array of programmable logic blocks
- Logic blocks configurable to perform complex functions
- The configuration is specified with the hardware description language

FPGA Architecture

Logic Cell



General reference Cell model

Cells details can change for different vendors or FPGA models.

Look-Up Table

X1	X2	ХЗ	Х4	Υ	
0	0	0	1	?	
0	0	1	0	?	
				?	
1	1	1	1	?	

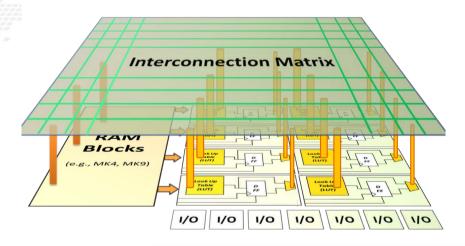
A Cell usually contains:

- A look-up table: allow to map any combinatorial function of 4 inputs and 1 output.
- a **FF of type D**: to store persistent data.
- A mux 2 -> 1: to eventually bypass the FF for purely combinatorial cells.

Programmable element

FPGA Architecture

Interconnection



Machine Learning on FPGA

Use in computing

The use of FPGA in computing is growing due several reasons:

- 📜 can potentially deliver great performance via massive parallelism
- can address payloads which are not performing well on uniprocessors (Neural Networks, Deep Learning)
- can handle efficiently non-standard data types

Use in computing

The use of FPGA in computing is growing due several reasons:

- can potentially deliver great performance via massive parallelism
- can address payloads which are not performing well on uniprocessors (Neural Networks, Deep Learning)
- can handle efficiently non-standard data types

Use in computing

The use of FPGA in computing is growing due several reasons:

- can potentially deliver great performance via massive parallelism
- can address payloads which are not performing well on uniprocessors (Neural Networks, Deep Learning)
- can handle efficiently non-standard data types

Integration of neural networks on FPGA

FPGAs are playing an increasingly important role in the industry sampling and data processing.

In the industrial field

- Intelligent vision;
- Financial services;
- Scientific simulations;
- Life science and medical data analysis;

In the scientific field

- Real time deep learning in particle physics;
- Hardware trigger of LHC experiments;
- And many others ...

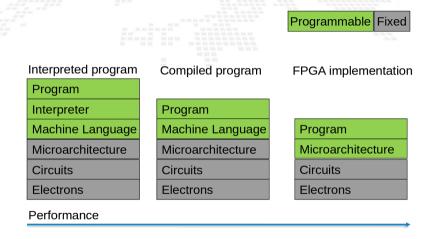
CPU vs GPU vs FPGA: Instructions, memory and parallelism

СРИ	GPU	FPGA	
Fixed architecture	Fixed architecture	Adaptable Architecture	
Predefined instruction set	Predefined instruction set	No fixed instruction set	
Fixed memory hierarchy	Fixed memory hierarchy	Customizable memory hierarchy	
Thread-level parallelism	SIMD parallelism	Excels at all types of parallelism	

FPGA Performance

- FPGA Performance is predictable
- There is no context switch, garbage collector or any background process
- The bitstream will be executed the same number of clock cycles every time
- The number of clock cycles needed can be computed easily

Software point of view



FPGA Drawbacks

On the other hand the adoption on FPGA has several drawbacks:

- Porting of legacy code is usually hard.
- Interoperability with standard applications is problematic.

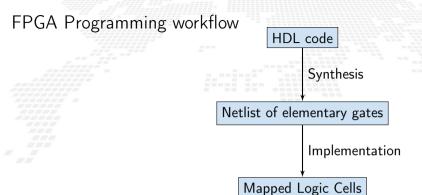
FPGA Drawbacks

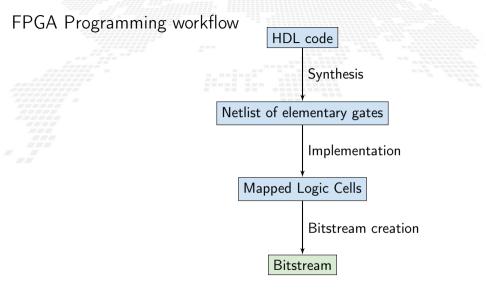
On the other hand the adoption on FPGA has several drawbacks:

- Porting of legacy code is usually hard.
- Interoperability with standard applications is problematic.

FPGA Programming workflow

HDL code

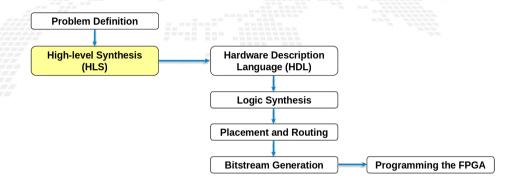




CPU vs GPU vs FPGA (HDL): Coding difficulty

	CPU	GPU	FPGA
Engineering time	short	medium	very long
Compilation time	short	short	very long
Debugging	easy	medium	hard
Maintainability	easy	medium	hard

HLS Worklow

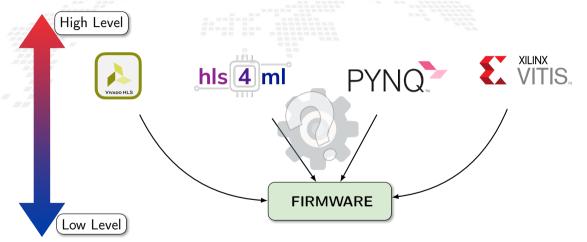


CPU vs GPU vs FPGA (HLS): Coding difficulty

	CPU	GPU	FPGA Sim	FPGA Hw
Engineering time	short	medium	medium	medium
Compilation time	short	short	short	Very long
Debugging	easy	medium	medium	medium
Maintainability	easy	medium	medium	medium

Firmware generation

Many projects have the goal of abstracting the firmware generation and use process.



Connections

Latency and Throughput

Latency: time passed from inputs to outputs

Throughput: quantity of outputs in the unit of time

Latency in FPGA

FPGAs achieve lower latency than software:

- latency below the microsecond
- latency constant and predictable

CPUs are not suitable as thread overhead is order of 10 microseconds GPUs are even worse since PCIe bus sys-call could require milliseconds

Examples:

- Ultra low latency trading
- CERN trigger system

Occupancy

Is the amount of the various resources used on and FPGA (LUTs, DSP, etc) Problems:

- The algorithms has to create a circuit that can be contained in the available resources
- Tools to shrink or grow the occupancy
- The need for a runtime, platforms



Cloud resources

Amazon EC2 F1 use FPGAs to enable delivery of custom hardware accelerations. F1 instances are easy to program and come with everything you need to develop, simulate, debug, and compile hardware acceleration code.

Microsoft's Project Brainwave is a deep learning platform for real-time AI inference in the cloud and on the edge. A soft Neural Processing Unit (NPU), based on a high-performance field-programmable gate array (FPGA).

Firmware

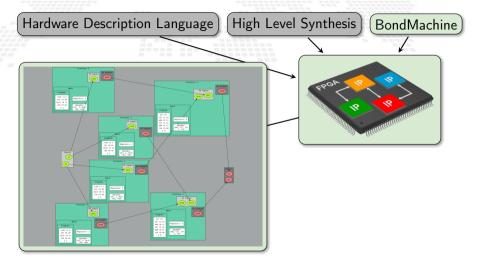
Hardware Description Language

```
. . .
       Res = {Res1[0][0].Res1[0][1].Res1[1][0].Res1[1][1]};
```


Firmware

```
Hardware Description Language
                                                  High Level Synthesis
     mplate <typename T, int DIM>
   void mmult_hw(T A[DIM][DIM], T B[DIM][DIM], T C[DIM][DIM])
      L1:for (int ia = 0; ia < DIM; ++ia)
          L2: for (int ib = 0; ib < DIM; ++ib)
              T sum = 0;
              L3:for (int id = 0; id < DIM; ++id)
                 sum += A[ia][id] * B[id][ib];
              C[ia][ib] = sum:
```

Firmware



The BondMachine

High level sources: Go, TensorFlow, NN

Building a new kind of computer architecture (multi-core and heterogeneous both in cores types and interconnections) which dynamically adapt to the specific computational problem rather than be static.

FPGA BM architecture Layer Concurrency and Specialization

Machine Learning on FPGA

High level sources: Go, TensorFlow, NN

Building a new kind of computer architecture (multi-core and heterogeneous both in cores types and interconnections) which dynamically adapt to the specific computational problem rather than be static.

FPGA Concurrency and Specialization

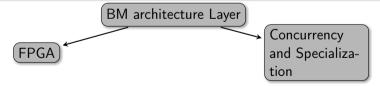
High level sources: Go, TensorFlow, NN

Building a new kind of computer architecture (multi-core and heterogeneous both in cores types and interconnections) which dynamically adapt to the specific computational problem rather than be static.

FPGA Concurrency and Specialization

High level sources: Go, TensorFlow, NN

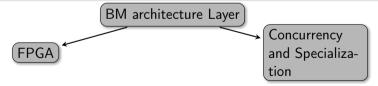
Building a new kind of computer architecture (multi-core and heterogeneous both in cores types and interconnections) which dynamically adapt to the specific computational problem rather than be static.



Machine Learning on FPGA

High level sources: Go, TensorFlow, NN, ...

Building a new kind of computer architecture (multi-core and heterogeneous both in cores types and interconnections) which dynamically adapt to the specific computational problem rather than be static.



The BondMachine project

- 1 Introduction
 Challenges
 FPGA
 HDL workflow
 HLS Workflow
 Concepts
 - 2 The BondMachine project
 Architectures handling
 Architectures molding
 Bondgo
 Basm
 API

- 3 Misc Project timeling
 - 4 Machine Learning
 Train
 BondMachine creation
 Simulation
 Accelerator
 Benchmark
 - 5 Optimizations
 - 6 Conclusions and Future directions Conclusions Ongoing

- Are composed by many, possibly hundreds, computing cores
- Have very small cores and not necessarily of the same type (different ISA and ABI)
- Have a not fixed way of interconnecting cores
- May have some elements shared among cores (for example channels and shared memories).

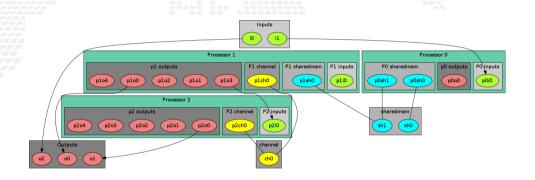
- Are composed by many, possibly hundreds, computing cores.
- Have very small cores and not necessarily of the same type (different ISA and ABI)
- Have a not fixed way of interconnecting cores
- May have some elements shared among cores (for example channels and shared memories).

- Are composed by many, possibly hundreds, computing cores.
- Have very small cores and not necessarily of the same type (different ISA and ABI).
- Have a not fixed way of interconnecting cores
- May have some elements shared among cores (for example channels and shared memories).

- Are composed by many, possibly hundreds, computing cores.
- Have very small cores and not necessarily of the same type (different ISA and ABI).
- Have a not fixed way of interconnecting cores.
- May have some elements shared among cores (for example channels and shared memories).

- Are composed by many, possibly hundreds, computing cores.
- Have very small cores and not necessarily of the same type (different ISA and ABI).
- Have a not fixed way of interconnecting cores.
- May have some elements shared among cores (for example channels and shared memories).

An example



The computational unit of the BM

The atomic computational unit of a BM is the "connecting processor" (CP) and has:

- Some general purpose registers of size Rsize
 - Some I/O dedicated registers of size Rsize
 - A set of implemented opcodes chosen among many available.
 - Dedicated ROM and RAM.
- Three possible operating modes.

The computational unit of the BM

The atomic computational unit of a BM is the "connecting processor" (CP) and has:

- Some general purpose registers of size Rsize.
 - Some I/O dedicated registers of size Rsize.
 - A set of implemented opcodes chosen among many available
 - Dedicated ROM and RAM.
- Three possible operating modes.

General purpose registers

2^R registers: r0,r1,r2,r3 ... r2^R

The computational unit of the BM

The atomic computational unit of a BM is the "connecting processor" (CP) and has:

- Some general purpose registers of size Rsize
- Some I/O dedicated registers of size Rsize.
 - A set of implemented opcodes chosen among many available.
 - Dedicated ROM and RAM.
- Three possible operating modes.

I/O specialized registers

N input registers: i0,i1 ... iN

M output registers: o0,o1 ... oM

The computational unit of the BM

The atomic computational unit of a BM is the "connecting processor" (CP) and has:

- Some general purpose registers of size Rsize
- Some I/O dedicated registers of size Rsize.
- A set of implemented opcodes chosen among many available.
 - Dedicated ROM and RAM.
- Three possible operating modes.

Full set of possible opcodes

adc,add,addf,addi,and,chc,chw,cil,cilc,cir,cirn,clc,clr,cpy,cset,dec,div,divf,dpc,expf,hit hlt,i2r,i2rw,incc,inc,j,jc,je,jgt0f,jlt,jlte,jr,jz,lfsr82,lfsr162r,m2r,mod,mulc,mult,multf nand,nop,nor,not,or,r2m,r2o,r2owa,r2owaa,r2s,r2v,r2vri,ro2r,ro2rri,rsc,rset,sic,s2r,saj,sbc sub,wrd,wwr,xnor,xor

The computational unit of the BM

The atomic computational unit of a BM is the "connecting processor" (CP) and has:

- Some general purpose registers of size Rsize
- Some I/O dedicated registers of size Rsize
- A set of implemented opcodes chosen among many available.
- Dedicated ROM and RAM.
- Three possible operating modes.

RAM and ROM

- \square 2^L RAM memory cells.
- 2^O ROM memory cells.

The computational unit of the BM

The atomic computational unit of a BM is the "connecting processor" (CP) and has:

- Some general purpose registers of size Rsize
- Some I/O dedicated registers of size Rsize.
- A set of implemented opcodes chosen among many available.
- Dedicated ROM and RAM.
- Three possible operating modes.

Operating modes

- Full Harvard mode.
- Full Von Neuman mode.
- Hybrid mode.

The non-computational element of the BM

Alongside CPs, BondMachines include non-computing units called "Shared Objects" (SO).

Examples of their purposes are

- Data storage (Memories).
- Message passing
- CP synchronization

A single SO can be shared among different CPs. To use it CPs have special instructions (opcodes) oriented to the specific SO.

The non-computational element of the BM

Alongside CPs, BondMachines include non-computing units called "Shared Objects" (SO).

Examples of their purposes are:

- Data storage (Memories).
- Message passing
- CP synchronization

A single SO can be shared among different CPs. To use it CPs have special instructions (opcodes) oriented to the specific SO.

The non-computational element of the BM

Alongside CPs, BondMachines include non-computing units called "Shared Objects" (SO).

Examples of their purposes are:

- Data storage (Memories).
- Message passing.
- CP synchronization

A single SO can be shared among different CPs. To use it CPs have special instructions (opcodes) oriented to the specific SO.

The non-computational element of the BM

Alongside CPs, BondMachines include non-computing units called "Shared Objects" (SO).

Examples of their purposes are:

- Data storage (Memories).
- Message passing.
- CP synchronization.

A single SO can be shared among different CPs. To use it CPs have special instructions (opcodes) oriented to the specific SO.

The non-computational element of the BM

Alongside CPs, BondMachines include non-computing units called "Shared Objects" (SO).

Examples of their purposes are:

- Data storage (Memories).
- Message passing.
- CP synchronization.

A single SO can be shared among different CPs. To use it CPs have special instructions (opcodes) oriented to the specific SO.

The non-computational element of the BM

Alongside CPs, BondMachines include non-computing units called "Shared Objects" (SO).

Examples of their purposes are:

- Data storage (Memories).
- Message passing.
- CP synchronization.

A single SO can be shared among different CPs. To use it CPs have special instructions (opcodes) oriented to the specific SO.

The BM computer architecture is managed by a set of tools to:

- build a specify architecture
- modify a pre-existing architecture
- simulate or emulate the behavior
- generate the Hardware Description Language Code (HDL)

Processor Builder

Selects the single processor, assembles and disassembles, saves on disk as JSON, creates the HDL code of a CP.

BondMachine Builder

Connects CPs and SOs together in custom topologies, loads and saves on disk as JSON, create BM's HDL code

Simulation Framework

Simulates the behaviour, emulates a BM on a standard Linux workstation

The BM computer architecture is managed by a set of tools to:

- build a specify architecture
- modify a pre-existing architecture
- simulate or emulate the behavior
- generate the Hardware Description Language Code (HDL)

Processor Builder

Selects the single processor, assembles and disassembles, saves on disk as JSON, creates the HDL code of a CP

BondMachine Builder

Connects CPs and SOs together in custom topologies, loads and saves on disk as JSON, create BM's HDL code

Simulation Framework

Simulates the behaviour, emulates a BM on a standard Linux workstation

The BM computer architecture is managed by a set of tools to:

- build a specify architecture
- modify a pre-existing architecture
- simulate or emulate the behavior
- generate the Hardware Description Language Code (HDL)

Processor Builder

Selects the single processor, assembles and disassembles, saves on disk as JSON, creates the HDL code of a CP

BondMachine Builder

Connects CPs and SOs together in custom topologies, loads and saves on disk as JSON, create BM's HDL code

Simulation Framework

Simulates the behaviour, emulates a BM on a standard Linux workstation

The BM computer architecture is managed by a set of tools to:

- build a specify architecture
- modify a pre-existing architecture
- simulate or emulate the behavior
- generate the Hardware Description Language Code (HDL)

Processor Builder

Selects the single processor, assembles and disassembles, saves on disk as JSON, creates the HDL code of a CP

BondMachine Builder

Connects CPs and SOs together in custom topologies, loads and saves on disk as JSON, create BM's HDL code

Simulation Framework

Simulates the behaviour, emulates a BM on a standard Linux workstation

Toolchains

A set of toolchains allow the build and the direct deploy to a target device of BondMachines

Bondgo Toolchain main targets

A file local.mk contains references to the source code as well all the build necessities make bondmachine creates the JSON representation of the BM and assemble its code make hdl creates the HDL files of the BM make show displays a graphical representation of the BM make simulate [simbatch] start a simulation [batch simulation] make bitstream [design_bitstream] create the firwware [accelerator firmware] make program flash the device into the destination target

Simulation

An important feature of the tools is the possibility of simulating BondMachine behavior.

An event input file describes how BondMachines elements has to change during the simulation timespan and which one has to be be reported.

The simulator can produce results in the form of:

- Activity log of the BM internal.
- Graphical representation of the simulation
- Report file with quantitative data. Useful to construct metrics

Graphical simulation in action

Simulation

An important feature of the tools is the possibility of simulating BondMachine behavior.

An event input file describes how BondMachines elements has to change during the simulation timespan and which one has to be reported.

The simulator can produce results in the form of:

- Activity log of the BM internal.
- Graphical representation of the simulation.
- Report file with quantitative data. Useful to construct metrics

Graphical simulation in action

Simulation

An important feature of the tools is the possibility of simulating BondMachine behavior.

An event input file describes how BondMachines elements has to change during the simulation timespan and which one has to be reported.

The simulator can produce results in the form of:

- Activity log of the BM internal.
- Graphical representation of the simulation.
- Report file with quantitative data. Useful to construct metrics

Graphical simulation in action

As stated before BondMachines are not general purpose architectures, and to be effective have to be shaped according the specific problem.

- bondgo: A new type of compiler that create not only the CPs assembly but also the architecture itself.
 - basm: The BondMachine Assembler.
 - A set of API to create BondMachine to fit a specific computational problems.
- An Evolutionary Computation framework to "grow" BondMachines according some fitness function via simulation.
- A set of tools to use BondMachine in Machine Learning

As stated before BondMachines are not general purpose architectures, and to be effective have to be shaped according the specific problem.

- bondgo: A new type of compiler that create not only the CPs assembly but also the architecture itself.
 - basm: The BondMachine Assembler.
 - A set of API to create BondMachine to fit a specific computational problems.
- An Evolutionary Computation framework to "grow" BondMachines according some fitness function via simulation.
- A set of tools to use BondMachine in Machine Learning

As stated before BondMachines are not general purpose architectures, and to be effective have to be shaped according the specific problem.

- **bondgo**: A new type of compiler that create not only the CPs assembly but also the architecture itself.
- basm: The BondMachine Assembler.
- A set of API to create BondMachine to fit a specific computational problems
- An Evolutionary Computation framework to "grow" BondMachines according some fitness function via simulation.
- A set of tools to use BondMachine in Machine Learning

As stated before BondMachines are not general purpose architectures, and to be effective have to be shaped according the specific problem.

- bondgo: A new type of compiler that create not only the CPs assembly but also the architecture itself.
- basm: The BondMachine Assembler.
- A set of API to create BondMachine to fit a specific computational problems.
- An Evolutionary Computation framework to "grow" BondMachines according some fitness function via simulation.
- A set of tools to use BondMachine in Machine Learning

As stated before BondMachines are not general purpose architectures, and to be effective have to be shaped according the specific problem.

- bondgo: A new type of compiler that create not only the CPs assembly but also the architecture itself.
- basm: The BondMachine Assembler.
- A set of API to create BondMachine to fit a specific computational problems.
- An Evolutionary Computation framework to "grow" BondMachines according some fitness function via simulation.
- A set of tools to use BondMachine in Machine Learning

Molding the BondMachine

As stated before BondMachines are not general purpose architectures, and to be effective have to be shaped according the specific problem.

Several methods (apart from writing in assembly and building a BondMachine from scratch) have been developed to do that:

- bondgo: A new type of compiler that create not only the CPs assembly but also the architecture itself.
- basm: The BondMachine Assembler.
- A set of API to create BondMachine to fit a specific computational problems.
- An Evolutionary Computation framework to "grow" BondMachines according some fitness function via simulation.
- A set of tools to use BondMachine in Machine Learning

Molding the BondMachine

As stated before BondMachines are not general purpose architectures, and to be effective have to be shaped according the specific problem.

Several methods (apart from writing in assembly and building a BondMachine from scratch) have been developed to do that:

- bondgo: A new type of compiler that create not only the CPs assembly but also the architecture itself.
- basm: The BondMachine Assembler.
- A set of API to create BondMachine to fit a specific computational problems.
- An Evolutionary Computation framework to "grow" BondMachines according some fitness function via simulation.
- A set of tools to use BondMachine in Machine Learning.

Symbond

Map symbolic mathematical expressions to BN

Basm

The BondMachine

Boolbond

Map boolean systems to BM

Bondgo

he architecture

Matrixwork

Basic matrix computation

ML tools

Map computational graphs to BM

Mapping specific computational problems to BMs

Symbond

Map symbolic mathematical expressions to BM

Rasm

The BondMachine

Boolbond

Map boolean systems to BM Matrixwork

Basic matrix computation

Bondgo

he architecture compiler

ML tools

Map computational graphs to BM

Symbond

Map symbolic mathematical expressions to BM

Rasm

The BondMachine

Boolbond

Map boolean systems to BM

Bondgo

he architecture compiler

Matrixwork

Basic matrix computation

ML tools

Map computational graphs to BM

Symbond

Map symbolic mathematical expressions to BM Boolbond

Map boolean systems to BM Matrixwork

Basic matrix computation

Rasm

The BondMachine

Bondgo

he architecture compiler

ML tools

Map computational graphs to BM

Symbond

Map symbolic mathematical expressions to BM Boolbond

Map boolean systems to BM Matrixwork

Basic matrix computation

Basm

The BondMachine assembler

Bondgo

The architecture compiler

ML tools

Map computational graphs to BM

Symbond

Map symbolic mathematical expressions to BM Boolbond

Map boolean systems to BM Matrixwork

Basic matrix computation

Basm

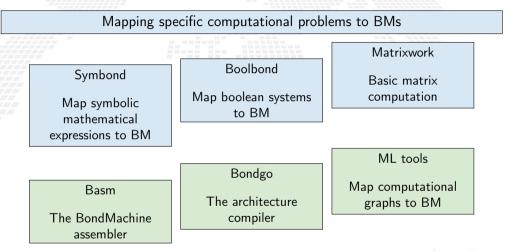
The BondMachine assembler

Bondgo

The architecture compiler

ML tools

Map computational graphs to BM



The major innovation of the BondMachine Project is its compiler.

Bondgo is the name chosen for the compiler developed for the BondMachine.

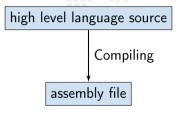
The compiler source language is Go as the name suggest.

This is the standard flow when building computer programs

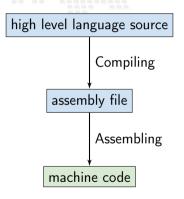
This is the standard flow when building computer programs

high level language source

This is the standard flow when building computer programs

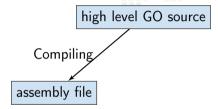


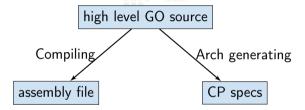
This is the standard flow when building computer programs

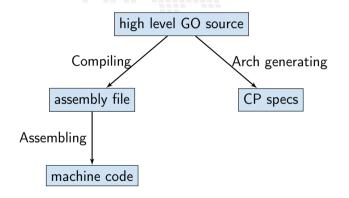


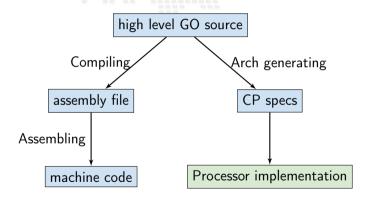
Bondgo does something different from standard compilers ...

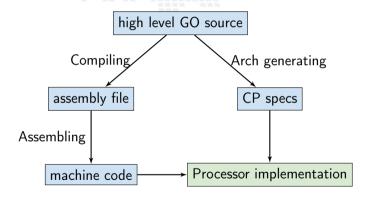
high level GO source

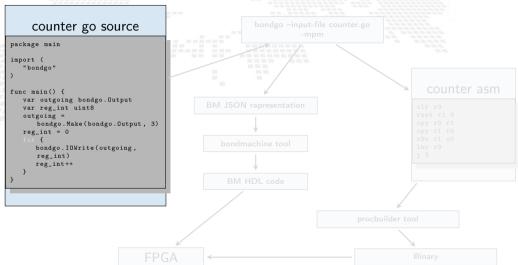




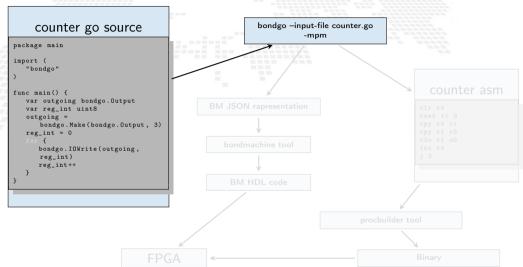


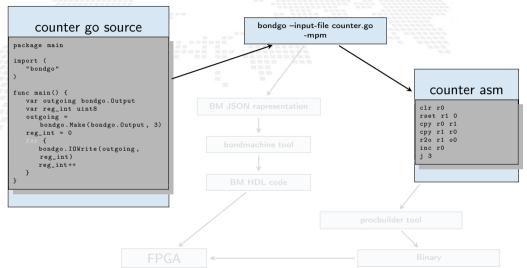


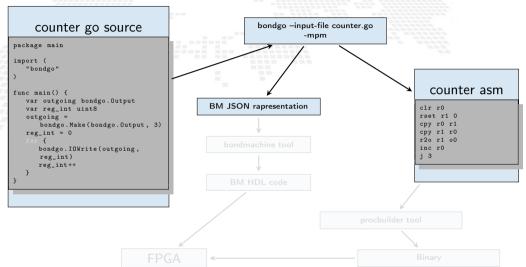


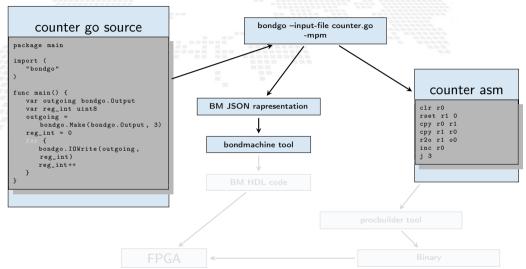


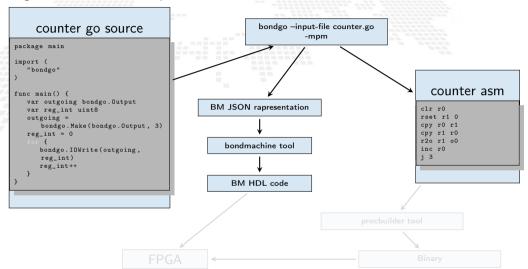
Machine Learning on FPGA

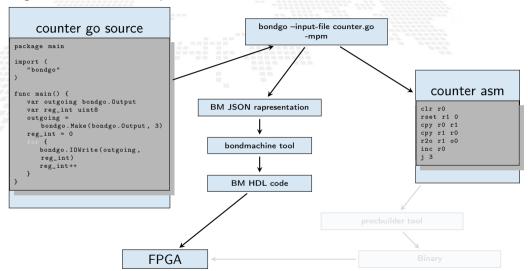


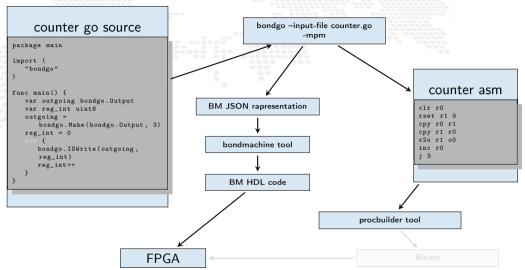


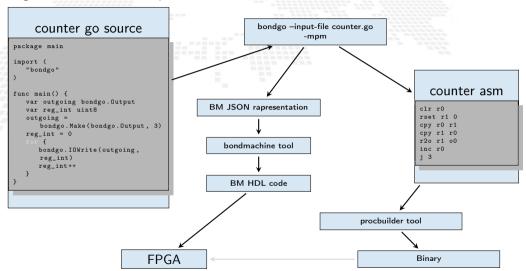


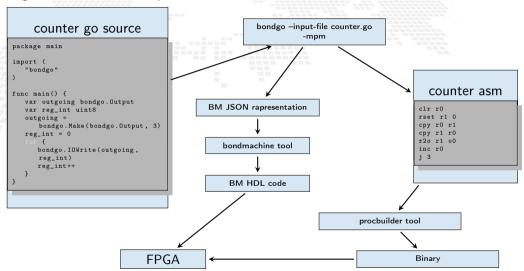












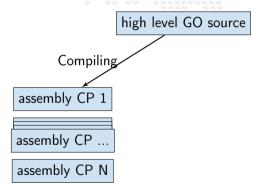
 \dots bondgo may not only create the binaries, but also the CP architecture, and \dots

 \dots it can do even much more interesting things when compiling concurrent programs.

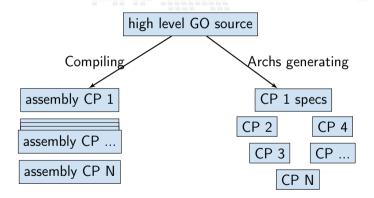
 \dots it can do even much more interesting things when compiling concurrent programs.

high level GO source

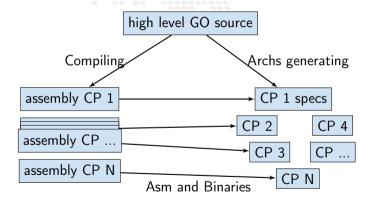
... it can do even much more interesting things when compiling concurrent programs.



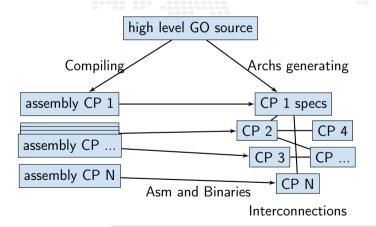
... it can do even much more interesting things when compiling concurrent programs.



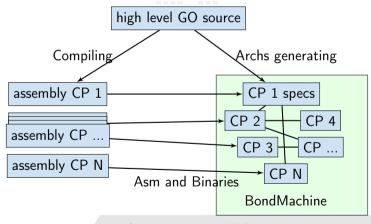
... it can do even much more interesting things when compiling concurrent programs.



... it can do even much more interesting things when compiling concurrent programs.



... it can do even much more interesting things when compiling concurrent programs.



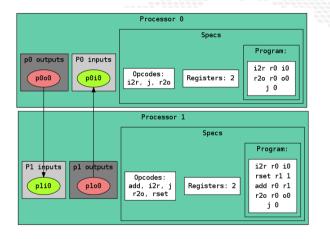
Machine Learning on FPGA

A multi-core example

multi-core counter

```
package main
import (
   "bondgo"
func pong() {
   var inO bondgo. Input
   var out0 bondgo.Output
   in0 = bondgo.Make(bondgo.Input. 3)
   out0 = bondgo.Make(bondgo.Output, 5)
      bondgo.IOWrite(out0, bondgo.IORead(in0)+1)
func main() {
   var inO bondgo. Input
   var out0 bondgo.Output
   in0 = bondgo.Make(bondgo.Input, 5)
   out0 = bondgo.Make(bondgo.Output, 3)
device_0:
   go pong()
      bondgo.IOWrite(out0, bondgo.IORead(in0))
```

A multi-core example



Compiling Architectures

One of the most important result

The architecture creation is a part of the compilation process.

The BondMachine assembler Basm is the compiler complementary tools.

- Support for template based assembly code
 - Combining and rewriting fragments of assembly code
 - Building hardware from assembly
 - Software/Hardware rearrange capabilities

The BondMachine assembler Basm is the compiler complementary tools.

- Support for template based assembly code
- Combining and rewriting fragments of assembly code
- Building hardware from assembly
- Software/Hardware rearrange capabilities

The BondMachine assembler *Basm* is the compiler complementary tools.

- Support for template based assembly code
- Combining and rewriting fragments of assembly code
- Building hardware from assembly
- Software/Hardware rearrange capabilities

The BondMachine assembler *Basm* is the compiler complementary tools.

- Support for template based assembly code
- Combining and rewriting fragments of assembly code
- Building hardware from assembly
- Software/Hardware rearrange capabilities

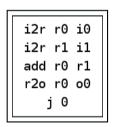
The BondMachine assembler *Basm* is the compiler complementary tools.

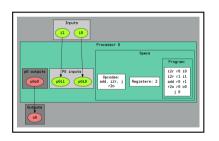
- Support for template based assembly code
- Combining and rewriting fragments of assembly code
- Building hardware from assembly
- Software/Hardware rearrange capabilities

Abstract Assembly

The Assembly language for the BM has been kept as independent as possible from the particular CP.

Given a specific piece of assembly code Bondgo has the ability to compute the "minimum CP" that can execute that code.





These are Building Blocks for complex BondMachines.

With these Building Blocks

Several libraries have been developed to map specific problems on BondMachines:

- Symbond, to handle mathematical expression.
- Boolbond, to map boolean expression.
- Matrixwork, to perform matrices operations.

With these Building Blocks

Several libraries have been developed to map specific problems on BondMachines:

- Symbond, to handle mathematical expression.
- Boolbond, to map boolean expression.
- Matrixwork, to perform matrices operations.

With these Building Blocks

Several libraries have been developed to map specific problems on BondMachines:

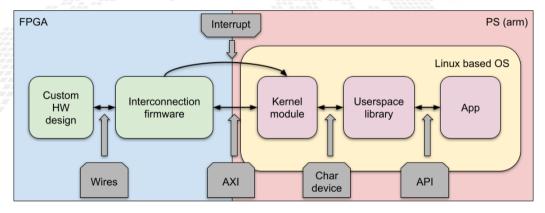
- Symbond, to handle mathematical expression.
- Boolbond, to map boolean expression.
- Matrixwork, to perform matrices operations.

With these Building Blocks

Several libraries have been developed to map specific problems on BondMachines:

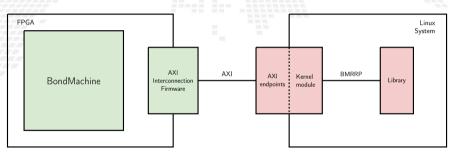
- Symbond, to handle mathematical expression.
- Boolbond, to map boolean expression.
- Matrixwork, to perform matrices operations.

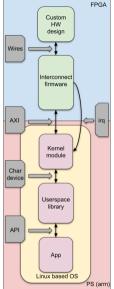
BondMachine as accelerators



Talk with details about how the accelerator is build

Accelerated Application





Misc

1 Introduction

FPGA HDL workflow HLS Workflow Concepts Cloud

2 The BondMachine project

Architectures handling Architectures molding Bondgo Basm

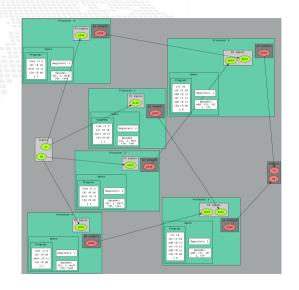
3 Misc Project timeline

4 Machine Learning

BondMachine Simulation Accelerator

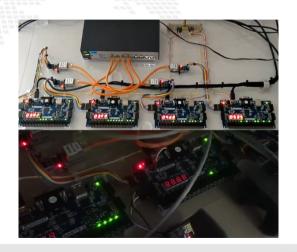
- 5 Optimizations
- 6 Conclusions and Future directions
 Conclusions
 Ongoing

- The BondMachine is a software ecosystem for the dynamical generation (from several HL types of origin) of computer architectures that can be synthesized of FPGA and
- used as standalone devices.
- as clustered devices
- and as firmware for computing accelerators.



- The BondMachine is a software ecosystem for the dynamical generation (from several HL types of origin) of computer architectures that can be synthesized of FPGA and
- used as standalone devices,
- as clustered devices
- and as firmware for computing accelerators.

- The BondMachine is a software ecosystem for the dynamical generation (from several HL types of origin) of computer architectures that can be synthesized of FPGA and
- used as standalone devices,
- as clustered devices,
- and as firmware for computing accelerators.



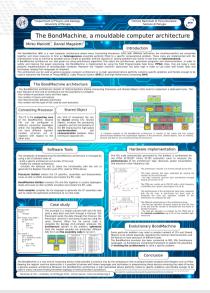
- The BondMachine is a software ecosystem for the dynamical generation (from several HL types of origin) of computer architectures that can be synthesized of FPGA and
- used as standalone devices,
- as clustered devices,
- and as firmware for computing accelerators.

CCR 2015 First ideas, 2016 Poster, 2017 Talk

InnovateFPGA 2018 Iron Award. Grand Final at Intel Campus (CA) USA

Invited lectures at: "Advanced Workshop on Modern FPGA Based Technology for Scientific Computing", ICTP 2019

- Invited lectures at: "NiPS Summer School 2019
 - Architectures and Algorithms for Energy-Efficient IoT and HPC Applications
- Golab 2018 talk and ISGC 2019 PoS
- Article published on Parallel Computing Elsevier 2022
- PON PHD program



- CCR 2015 First ideas, 2016 Poster, 2017 Talk
- InnovateFPGA 2018 Iron Award, Grand Final at Intel Campus (CA) USA
 - Invited lectures at: "Advanced Workshop on Modern FPGA Based Technology for Scientific Computing", ICTP 2019
- Invited lectures at: "NiPS Summer School 2019
 Architectures and Algorithms for Energy-Efficient IoT and HPC Applications"
- Golab 2018 talk and ISGC 2019 PoS
- Article published on Parallel Computing, Elsevier 2022
- PON PHD program

- CCR 2015 First ideas, 2016 Poster, 2017 Talk
- InnovateFPGA 2018 Iron Award, Grand Final at Intel Campus (CA) USA
- Invited lectures at: "Advanced Workshop on Modern FPGA Based Technology for Scientific Computing", ICTP 2019
- Invited lectures at: "NiPS Summer School 2019
 - Architectures and Algorithms for Energy-Efficient IoT and HPC Applications¹
- Golab 2018 talk and ISGC 2019 PoS
- Article published on Parallel Computing, Elsevier 2022
- PON PHD program

- CCR 2015 First ideas, 2016 Poster, 2017 Talk
- InnovateFPGA 2018 Iron Award, Grand Final at Intel Campus (CA) USA
- Invited lectures at: "Advanced Workshop on Modern FPGA Based Technology for Scientific Computing", ICTP 2019
- Invited lectures at: "NiPS Summer School 2019
 Architectures and Algorithms for Energy-Efficient IoT and HPC Applications"
- Golab 2018 talk and ISGC 2019 PoS
- Article published on Parallel Computing, Elsevier 2022
- PON PHD program

Mirko Mariotti

Department of Physics and Geology - University of Perugia INFN Perugia

NiPS Summer School 2019 Architectures and Algorithms for Energy-Efficient IoT and HPC Applications 3-6 September 2019 - Perugia

- CCR 2015 First ideas, 2016 Poster, 2017 Talk
- InnovateFPGA 2018 Iron Award, Grand Final at Intel Campus (CA) USA
- Invited lectures at: "Advanced Workshop on Modern FPGA Based Technology for Scientific Computing", ICTP 2019
- Invited lectures at: "NiPS Summer School 2019
 Architectures and Algorithms for Energy-Efficient IoT and HPC Applications"
- Golab 2018 talk and ISGC 2019 PoS
- Article published on Parallel Computing Elsevier 2022
- PON PHD program

- CCR 2015 First ideas, 2016 Poster, 2017 Talk
- InnovateFPGA 2018 Iron Award, Grand Final at Intel Campus (CA) USA
- Invited lectures at: "Advanced Workshop on Modern FPGA Based Technology for Scientific Computing", ICTP 2019
- Invited lectures at: "NiPS Summer School 2019
 Architectures and Algorithms for Energy-Efficient IoT and HPC Applications"
- Golab 2018 talk and ISGC 2019 PoS
- Article published on Parallel Computing, Elsevier 2022
- PON PHD program

Parallel Computing

The BondMachine, a moldable computer architecture

Mirko Mariotti ^{a, b} ♣ ☎ ♥, Daniel Magalotti ^b, Daniele Spiga ^b, Loriano Storchi ^{c, b} ♣ ☎ ♥

Show more ~

+ Add to Mendeley 端 Share 🌖 Cite

https://doi.org/10.1016/j.parco.2021.102873

Get rights and conten

Highlights

- Co-design HW/SW of domain specific architectures via the modern GO language.
- Design of essential processors where only needed components are implemented.
- Creation of heterogeneous processor systems distributed over multiple fabrics.

- CCR 2015 First ideas, 2016 Poster, 2017 Talk
- InnovateFPGA 2018 Iron Award, Grand Final at Intel Campus (CA) USA
- Invited lectures at: "Advanced Workshop on Modern FPGA Based Technology for Scientific Computing", ICTP 2019
- Invited lectures at: "NiPS Summer School 2019
 Architectures and Algorithms for Energy-Efficient IoT and HPC Applications"
- Golab 2018 talk and ISGC 2019 PoS
- Article published on Parallel Computing, Elsevier 2022
- PON PHD program

Machine Learning

- 1 Introduction
 Challenges
 FPGA
 HDL workflow
 HLS Workflow
 Concepts
- 2 The BondMachine project
 Architectures handling
 Architectures molding
 Bondgo
 Basm

- 3 Misc Project timelin
 - 4 Machine Learning
 Train
 BondMachine creation
 Simulation
 Accelerator
 Benchmark
 - 5 Optimizations
 - 6 Conclusions and Future directions
 Conclusions
 Ongoing
 Ongoing

Machine Learning with BondMachine

Architectures with multiple interconnected processors like the ones produced by the BondMachine Toolkit are a perfect fit for Neural Networks and Computational Graphs.

Several ways to map this structures to BondMachine has been developed

- A native Neural Network library
- A Tensorflow to BondMachine translator
- An NNEF based BondMachine composer

Machine Learning with BondMachine

Architectures with multiple interconnected processors like the ones produced by the BondMachine Toolkit are a perfect fit for Neural Networks and Computational Graphs.

Several ways to map this structures to BondMachine has been developed:

- A native Neural Network library
- A Tensorflow to BondMachine translator
- An NNEF based BondMachine composer

Machine Learning with BondMachine Native Neural Network library

The tool *neuralbond* allow the creation of BM-based neural chips from an API go interface.

- Neurons are converted to BondMachine connecting processors.
- Tensors are mapped to CP connections.

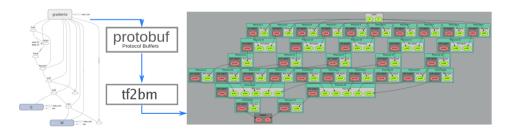
```
layers := (lint(2, 5, 2)
weights := make((lneuralbond.Weight, 0)

if *mave_bondmachine != "" {
    if mymachine, ok :=
        neuralbond.Build.MLP(layers, weights); ok
    == nil {
        if _, err := os.Stat(*save_bondmachine);
        os.lshotExist(err) {
            f. err := os.Create(*save_bondmachine) check(err)
            defer f.Close()
        }
    }
}
```

TensorFlow[™] to Bondmachine tf2bm

TensorFlow[™] is an open source software library for numerical computation using data flow graphs.

Graphs can be converted to BondMachines with the tf2bm tool.



Machine Learning with BondMachine NNEF Composer

Neural Network Exchange Format (NNEF) is a standard from Khronos Group to enable the easy transfer of trained networks among frameworks, inference engines and devices

The NNEF BM tool approach is to descent NNEF models and build BondMachine multi-core accordingly

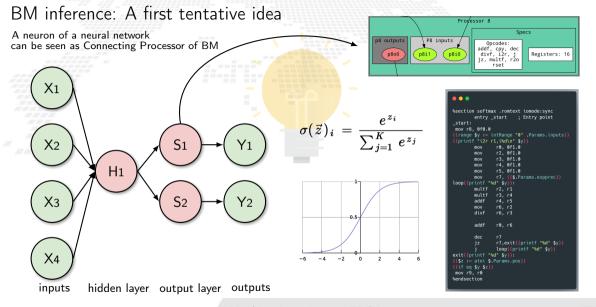
This approch has several advandages over the previous:

- It is not limited to a single framework
- NNEF is a textual file, so no complex operations are needed to read models

Specs

FPGA

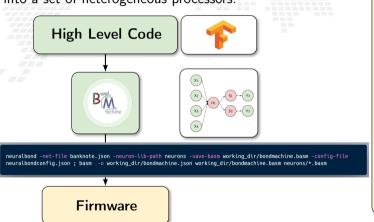
- Digilent Zedboard
- Soc: Zynq XC7Z020-CLG484-1
- 512 MB DDR3
- Vivado 2020.2
- 100MHz
- PYNQ 2.6 (custom build)

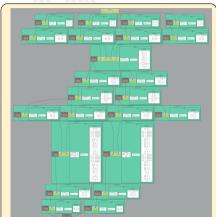


From idea to implementation

Starting from High Level Code, a NN model trained with TensorFlow and exported in a standard interpreted by neuralbond that converts nodes and weights of the network

into a set of heterogeneous processors.





A first test

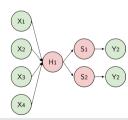
Dataset info:

- Dataset name: Banknote
 Authentication
- **Description**: Dataset on the distinction between genuine and counterfeit banknotes. The data was extracted from images taken from genuine and fake banknote-like samples.
- N. features: 4
- Classification: binary
- Samples: 1097

Neural network info:

- Class: Multilayer perceptron fully connected
- Layers:
 - ① An hidden layer with 1 linear neuron
 - One output layer with 2 softmax neurons

Graphic representation:



BM hands-on NN Hands-on N.1: Train

Goals are:

To train the simple model and prepare it from the BM

Reference notebook: banknote-train.ipynb

BM hands-on NN Hands-on N.1 outcome

The outcome of this first part of the hands-on are three files:

- sample.csv is a test dataset that will be used to feed the inferences of both: the BM hardware and the BM simulation
- sw.csv is the software predictions over that dataset and will be used to check the BM inference probabilities and predictions
- modelBM.json is the trained network that will use as BM source in the next demo

BM hands-on NN Hands-on N.2: BondMachine creation

Goals are:

Use modelBM created on the previous step to create a BondMachine

 $\textit{Reference notebook:} \ \, \mathsf{proj_zedboard_ml_creation / notebook.ipynb}$

BM hands-on

The outcome of this second part of the hands-on are:

- bondmachine.json, a representation of the generated abstract machine
- Al the HDL files needed to build the firmware for the given board

BM hands-on

NN Hands-on N.3: BondMachine simulation

Goals are

- Simulate the test dataset with the BondMachine simulator
- Compare the results with the keras prediction

Reference notebook: proj_zedboard_ml_simbatch /notebook.ipynb

Simulation NN Hands-on N.3 outcome

The outcome of this third part of the hands-on is:

simbatchoutput.csv, a simulated CSV files containing the output probabilities and the prediction

BM hands-on

NN Hands-on N.4: Accelerator creation

Goals are:

Create the accelerator firmware

Reference notebook: proj zedboard ml accelerator /notebook.ipynb

Accelerator creation NN Hands-on N.4 outcome

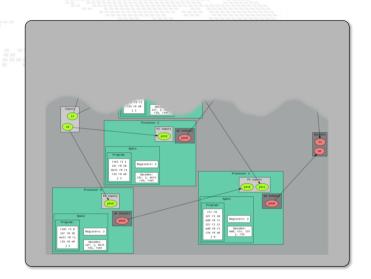
Notebook on the board - predictions and correctness

- Thanks to PYNQ we can easily load the bitstream and program the FPGA in real time.
- With their APIs we interact with the memory addresses of the BM IP to send data into the inputs and read the outputs (not using BM kernel module)
- Dump output results for future analysis

Open the notebook

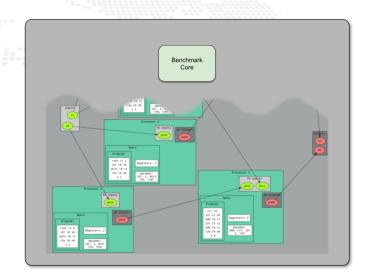
Benchmark an IP is not an easy task.

Fortunately we have a custom design and an FPGA.



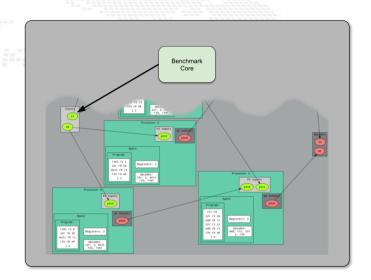
Benchmark an IP is not an easy task.

Fortunately we have a custom design and an FPGA.



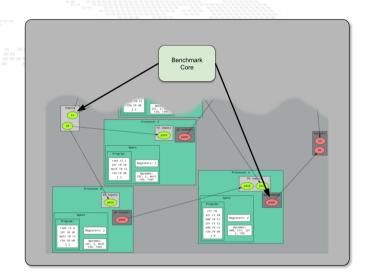
Benchmark an IP is not an easy task.

Fortunately we have a custom design and an FPGA.



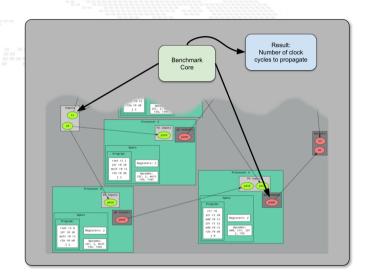
Benchmark an IP is not an easy task.

Fortunately we have a custom design and an FPGA.



Benchmark an IP is not an easy task.

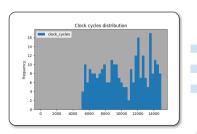
Fortunately we have a custom design and an FPGA.



Inference evaluation

Evaluation metrics used:

- **Inference speed**: time taken to predict a sample i.e. time between the arrival of the input and the change of the output measured with the **benchcore**;
- Resource usage: luts and registers in use;
- Accuracy: as the average percentage of error on probabilities.



 σ : 2875.94

Mean: 10268.45

Latency: 102.68 µs

Resource usage

resource	value	occupancy
regs	15122	28.42%
luts	11192	10.51%

Machine Learning on FPGA

Analysis notebook

Another notebook is used to compare runs from different accelerators.

	Software	
prob0	prob1	class
0.6895	0.3104	0
0.5748	0.4251	0
0.4009	0.5990	1

BondMachine		
prob0	prob1	class
0.6895	0.3104	0
0.5748	0.4251	0
0.4009	0.5990	1

The output of the bm corresponds to the software output

Reference notebook: analysis /zedboard_banknote /analysis.ipynb

$[\mathsf{Optimizations}]$

- 1 Introduction
 - FPGA HDL workflow HLS Workflow Concepts
- 2 The BondMachine project

Architectures molding
Bondgo
Basm

API

3 Misc Project timeline

4 Machine Learning

BondMachine creation Simulation Accelerator

- 5 Optimizations
- 6 Conclusions and Future directions
 Conclusions
 Ongoing

A first example of optimization

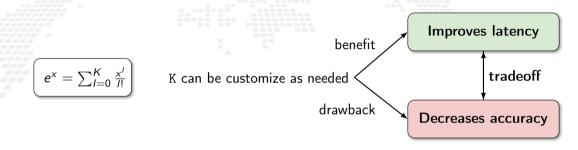
Remember the softmax function?

$$\left(\sigma(z_i) = rac{\mathrm{e}^{z_i}}{\sum_{j=1}^N \mathrm{e}^{z_j}}
ight)$$

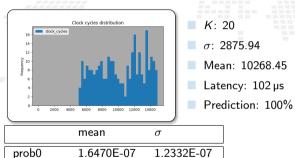
$$e^{x} = \sum_{l=0}^{K} \frac{x^{l}}{l!}$$

```
• • •
%section softmax .romtext iomode:svnc
        entry start
                        : Entry point
start:
mov r8. 0f0.0
{{range $v := intRange "0" .Params.inputs}}
{{printf "i2r r1,i%d\n" $v}}
                r0, 0f1.0
               r2, 0f1.0
               r3, 0f1.0
        mov
               r4, 0f1.0
        mov
                r5, 0f1.0
                r7, {{$.Params.expprec}}
loop{{printf "%d" $y}}:
        multf
               r2, r1
               r3, r4
        multf
        addf
                r4, r5
        mov
                r6. r2
        divf
                r6. r3
        addf
                r0, r6
        dec
                r7.exit{{printf "%d" $v}}
                loop{{printf "%d" $v}}
exit{{printf "%d" $y}}:
{{$z := atoi $.Params.pos}}
{{if ea $v $z}}
mov r9, r0
%endsection
```

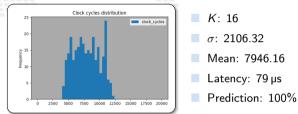
A first example of optimization



Changing number of K of the exponential factors in the softmax function...



1.2142E-07

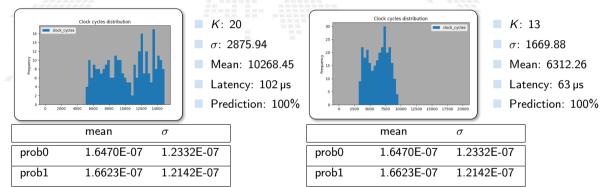


	mean	σ
prob0	1.6470E-07	1.2332E-07
prob1	1.6623E-07	1.2142E-07

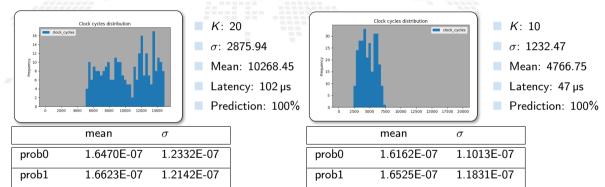
1.6623E-07

prob1

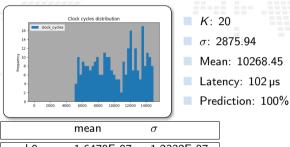
Changing number of K of the exponential factors in the softmax function...



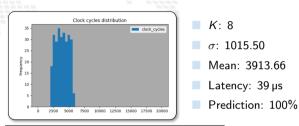
Changing number of K of the exponential factors in the softmax function...



Changing number of K of the exponential factors in the softmax function...

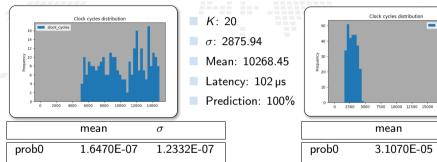


	mean	σ
prob0	1.6470E-07	1.2332E-07
prob1	1.6623E-07	1.2142E-07

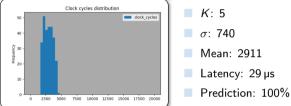


	mean	σ
prob0	6.5562E-05	1.7607E-05
prob1	6.6098E-05	1.7609E-05

Changing number of K of the exponential factors in the softmax function...



1.2142E-07

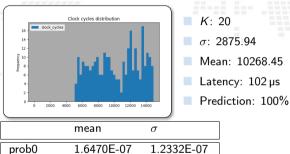


	mean	σ
prob0	3.1070E-05	7.5290E-05
prob1	3.1070E-05	7.5290E-05

1.6623E-07

prob1

Changing number of K of the exponential factors in the softmax function...



1.2142E-07

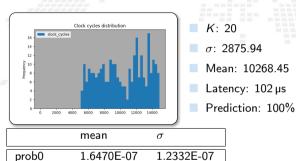
	_	1	
16 -	Clock cycles distribution dock_cycles		K: 3
14 -			σ : 394.10
uedneuch 8 -			Mean: 1750.93
6 - 4 -			Latency: 17 μs
0 2500 50	00 7500 10000 12500 15000 17500 20000		Prediction: 100%

	mean	σ
prob0	0.0053	0.0090
prob1	0.0053	0.0090

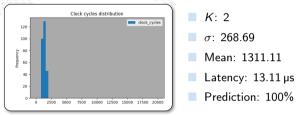
1.6623E-07

prob1

Changing number of K of the exponential factors in the softmax function...



1.2142E-07

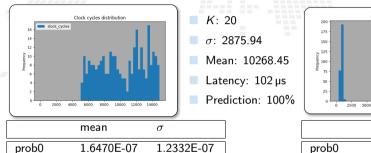


	mean	σ
prob0	0.0193	0.0232
prob1	0.0193	0.0232

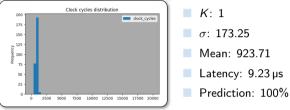
1.6623E-07

prob1

Changing number of K of the exponential factors in the softmax function...



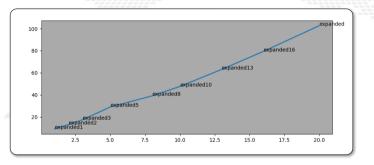
1.2142E-07



	mean	σ
prob0	0.0990	0.1641
prob1	0.0990	0.1641

1.6623E-07

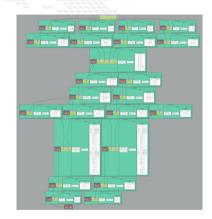
prob1



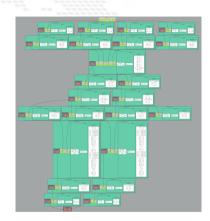
K	Inference time
1	9.23 µs
2	13.11 µs
3	17.50 μs
5	29.11 μs
8	39.13 µs
10	47.66 μs
13	63.12 µs
16	79.46 µs
20	102.68 µs

Reduced inference times by a factor of 10 ... only by decreasing the number of iterations.

- The tools (neuralbond+basm) create a graph of relations among fragments of assembly
- Not necessarily a fragment has to be mapped to a single CP
- They can arbitrarily be rearranged into CP:
- The resulting firmwares are identical in term of the computing outcome, but differs in occupancy and latency.



- The tools (neuralbond+basm) create a graph of relations among fragments of assembly
- Not necessarily a fragment has to be mapped to a single CP
- They can arbitrarily be rearranged into CPs
- The resulting firmwares are identical in term of the computing outcome, but differs in occupancy and latency.



- The tools (neuralbond+basm) create a graph of relations among fragments of assembly
- Not necessarily a fragment has to be mapped to a single CP
- They can arbitrarily be rearranged into CPs
- The resulting firmwares are identical in term of the computing outcome, but differs in occupancy and latency.

```
- Mara - 🔆 - Mara - 🔆
  - 15 car can $150 to $5 car can $150 to $5 car can $15
```

- The tools (neuralbond+basm) create a graph of relations among fragments of assembly
- Not necessarily a fragment has to be mapped to a single CP
- They can arbitrarily be rearranged into CPs
- The resulting firmwares are identical in term of the computing outcome, but differs in occupancy and latency.

```
- 10 mm - 100 mm - 100
```

BM hands-on NN Hands-on N.5: CP pruning

Goals are:

Prune a processor and find out the consequences

Reference notebook: proj_zedboard_ml_cp_pruning /notebook.ipynb

BM hands-on NN Hands-on N.6: CP collapsing

Goals are:

Collapse processors and find out the consequences

Reference notebook: proj_zedboard_ml_cp_collapsing /notebook.ipynb

BM hands-on

Goals are:

 Copy a project directory and try pruning, collapsing, simulating and the assembly of the neurons

Several ways for customization and optimization

The great control over of the architectures generated by the BondMachine gives several possible optimizations.

Mixing hardware and software optimizations

CP Pruning and/or collapsing

Fabric independent HW instructions swapping

Fine control over occupancy vs latency

Fragment composition

HW/SW Templates

Software based functions

Conclusions and Future directions

- 1 Introduction
 Challenges
 FPGA
 HDL workflow
 HLS Workflow
 Concepts
 - 2 The BondMachine project
 Architectures handling
 Architectures molding
 Bondgo
 Basm

- 3 Misc Project timeline
- 4 Machine Learnin
 Train
 BondMachine creation
 Simulation
 Accelerator
 Benchmark
- 5 Optimizations
- 6 Conclusions and Future directions
 Conclusions
 Ongoing
 Future

Conclusions

The BondMachine is a new kind of computing device made possible in practice only by the emerging of new re-programmable hardware technologies such as FPGA.

The result of this process is the construction of a computer architecture that is not anymore a static constraint where computing occurs but its creation becomes a part of the computing process, gaining computing power and flexibility.

Over this abstraction is it possible to create a full computing Ecosystem, ranging from small interconnected IoT devices to Machine Learning accelerators.

Ongoing The project

- Move all the code to github
- Documentation
- First DAQ use case
- Complete the inclusion of Intel and Lattice FPGAs
- ML inference in a cloud workflow

Ongoing Accelerators

- Different data types and operations, especially low and trans-precision
- Different boards support, especially data center accelerator
- Compare with GPUs
- Include some real power consumption measures

Ongoing Machine Learning

With ML we are still at the beginning ..

- Quantization
- More datasets: test on other datasets with more features and multiclass classification
- Neurons: increase the library of neurons to support other activation functions
- **Evaluate results**: compare the results obtained with other technologies (CPU and GPU) in terms of inference speed and energy efficiency

- Include new processor shared objects and currently unsupported opcodes
 - Extend the compiler to include more data structures
- Assembler improvements, fragments optimization and others
- Improve the networking including new kind of interconnection firmware

- Include new processor shared objects and currently unsupported opcodes
- Extend the compiler to include more data structures
- Assembler improvements, fragments optimization and others
- Improve the networking including new kind of interconnection firmware

- Include new processor shared objects and currently unsupported opcodes
- Extend the compiler to include more data structures
- Assembler improvements, fragments optimization and others
- Improve the networking including new kind of interconnection firmware

- Include new processor shared objects and currently unsupported opcodes
- Extend the compiler to include more data structures
- Assembler improvements, fragments optimization and others
- Improve the networking including new kind of interconnection firmware

- Include new processor shared objects and currently unsupported opcodes
- Extend the compiler to include more data structures
- Assembler improvements, fragments optimization and others
- Improve the networking including new kind of interconnection firmware

website: http://bondmachine.fisica.unipg.it
code: https://github.com/BondMachineHQ

parallel computing paper: link

contact email: mirko.mariotti@unipg.it