
BondMachine,
a mouldable computer architecture

The BondMachine team:
- Mirko Mariotti, Dipartimento di Fisica e Geologia, Universita' di Perugia
- Daniel Magalotti, Universita' di Modena e Reggio Emilia
- Daniele Spiga, Istituto Nazionale di Fisica Nucleare, Sezione di Perugia
- Isabella Pellegrino, Dipartimento di Fisica e Geologia, Universita' di Perugia

The BondMachine (BM) is an innovative computer architecture built on
two main components: Connecting Processors (CPs) and Shared Objects
(SOs). CPs have different Instruction Set Architecture (ISA) and can be
connected together sharing resources. The result is a heterogeneous
system perfectly fitted to a specific computational problem. The cores are
particularly simple (i.e. optimized to execute atomic tasks), and their
problem solving potential mainly relies on how they are interconnected.
Moreover, in order to use many well-known tools and techniques ranging
from languages to compilers, the "register machine" abstraction has been
kept.
The BM can be used as a general purpose computer architecture or as an
high specialized device perfectly suited to fit specific problems;
furthermore the BM is flexible enough to be adopted in different scenarios
like Internet of Things (IoT), Cyber Physical System (CPS) and High
Performance Computing (HPC).
The flexibility of the BM architecture makes possible the use of
evolutionary algorithms that select architectures, processors programs
and interconnections.
Currently the BM is implemented by using the Field Programmable Gate
Array (FPGA) chips that are the most powerful implementations of
reconfigurable hardware nowadays. The implemented EtherBond protocol
allows to build distributed systems.
The BM architecture combined with all these technologies results in a
brand new computing environment: The BondMachine Ecosystem.

Processor 0

P0 i nputsp0 outputsP0 channelP0 shar edmem P0 barri er

Processor 1

P1 i nputsp1 outputsP1 shar edmem P1 channel

Processor 2

P2 i nputsp2 outputsP2 channel P2 barri er

I nputs

Out put s barri erchannelshar edmem

p0i 0p0o0

p1i 1 p2i 0

p0ch0

ch0

p0sh0

sh0

p0br 0

br 0

p1i 0p1o0

o1

p1sh0 p1ch0 p2o0

o2

p2o1

o0

p2ch0 p2br 0

i 0 i 1

 A complete example of the BondMachine architecture. It consists of two inputs and tree outputs
interconnected between the input/output registers of the processors. Shared objects, such as memory,
Channel and Barrier, are connected among the processors.

Connecting Processor Shared Object

The CP is the computing core of
the BondMachine. Several CPs
can be configured in arbitrary
connection topologies within the
BondMachine. They can have
different registers, istruction
sets, io-registers and still
cooperating..

Any kind of component the can be
shared among CPs. Shared
Objects increase the processing
capability and the functionality of
the BM improving the high-speed
synchronization and
communication between tasks
running on separate CPs.

The BondMachine architecture consists of interconnections among Connecting Processors and Shared
Objects (SOs) built to implement dedicated tasks. The main features of this kind of architecture is the
possibility to configure:
- the number of processor cores and their types
- the number of inputs and outputs

The BondMachine architecture

Conclusion

We designed and developed an innovative computer architecture prototype, which considerably smooths the allocation of hardware
resources, even among multiple devices, and offers an alternative way to solve complex computational problems.
The key aspect of the project is the opportunity to manage the hardware without an operating system allocating the resources by using
an high level program (i.e. the Go language). This is what makes the system particularly user-friendly.
The combination of the BM architecture with hardware reconfiguration technologies (FPGA) and a dedicated communication protocol
over Ethernet is a strategy aimed at creating a smart ecosystem, with the following selling points:

The Prototype

Complex Multicore Systems

Processor 0

P0 i nputsp0 outputs

Processor 1

P1 i nputsp1 outputs

Processor 2

P2 i nputsp2 outputs

Processor 3

P3 i nputsp3 outputs

Processor 4

P4 i nputsp4 outputs

Processor 5

P5 i nputsp5 outputs

Processor 6

P6 i nputsp6 outputs

Processor 7

P7 i nputsp7 outputs

Processor 8

P8 i nputsp8 outputs

Processor 9

P9 i nputsp9 outputs

Processor 10

P10 i nputsp10 out put s

Processor 11

P11 i nputsp11 out put s

Processor 12

P12 i nputsp12 out put s

Processor 13

P13 i nputsp13 out put s

Processor 14

P14 i nputsp14 out put s

Processor 15

P15 i nputsp15 out put s

Processor 16

P16 i nputsp16 out put s

Processor 17

P17 i nputsp17 out put s

Processor 18

P18 i nputsp18 out put s

Processor 19

P19 i nputsp19 out put s

Processor 20

P20 i nputsp20 out put s

Processor 21

P21 i nputsp21 out put s

Processor 22

P22 i nputsp22 out put s

Processor 23

P23 i nputsp23 out put s

Processor 24

P24 i nputsp24 out put s

Processor 25

P25 i nputsp25 out put s

Processor 26

P26 i nputsp26 out put s

Processor 27

P27 i nputsp27 out put s

Processor 28

P28 i nputsp28 out put s

Processor 29

P29 i nputsp29 out put s

Processor 30

P30 i nputsp30 out put s

Processor 31

P31 i nputsp31 out put s

Processor 32

P32 i nputsp32 out put s

Processor 33

P33 i nputsp33 out put s

I nputs

Out put s

p0i 0p0o0

p10i 0

p1i 0p1o0

p12i 0

p2i 0p2o0

p14i 0

p3i 0p3o0

p16i 0

p4i 0p4o0

p18i 0

p5i 0p5o0

p10i 1

p6i 0p6o0

p12i 1

p7i 0p7o0

p14i 1

p8i 0p8o0

p16i 1

p9i 0p9o0

p18i 1p10o0

p11i 0p11o0

p20i 0 p21i 0

p12o0

p13i 0p13o0

p22i 0 p23i 0

p14o0

p15i 0p15o0

p24i 0 p25i 0

p16o0

p17i 0p17o0

p26i 0 p27i 0

p18o0

p19i 0p19o0

p28i 0 p29i 0p20o0

p30i 0

p21o0

p32i 0

p22o0

p30i 1

p23o0

p32i 1

p24o0

p30i 2

p25o0

p32i 2

p26o0

p30i 3

p27o0

p32i 3

p28o0

p30i 4

p29o0

p32i 4p30o0

p31i 0p31o0

o0

p32o0

p33i 0p33o0

o1

i 0 i 1

Optimizing a

single device to

support intricated

computational

workflows

A graphical rappresentation of a multilayer neural network as it is syntetized in the
BondMachine ecosystem.

Complex Interconnected Multicores

BM 0

I nputsOut put s

BM 1

I nputs Out put s

BM 2

I nputsOut put s

BM 3

I nputsOut put s

BM 4

I nputsOut put s

BM 5

I nputsOut put s

BM 6

I nputs Out put s

BM 7

I nputsOut put s

BM 8

I nputsOut put s

BM 9

I nputs Out put s

01

1 4 9

9 27 7

351

4 86

6

45

2

28

83

4

Extending the very same approch to

Enable the "IoT as a service"

Many distributed devices collaborating as a

single system

A graphical rappresentation of how to implement a distributed system of
BondMachines. The communication among devices follows the very same approch as
the communication among cores in a single device.

an OS-less approch to reduce the Software/Hardware gap

The prototype shown in this picture is composed of 4 FPGA evalution board (1) equiped with SPI ethernet dongles (2) that are connected throught a switch (3). The board are connected to a power supply (4).

BondMachine

ecosystem:

a multidevice

prototype

Simple Interconnected Multicores

package main

func test() {

 in0 = bondgo.Make(bondgo.Input, 3)
 out1 = bondgo.Make(bondgo.Output, 7)
 out0 = bondgo.Make(bondgo.Output, 5)
for {
 bondgo.IOWrite(out0, bondgo.IORead(in0)+1)
 }
}

func main() {
 in0 = bondgo.Make(bondgo.Input, 5)
 in1 = bondgo.Make(bondgo.Input, 8)
 out0 = bondgo.Make(bondgo.Output, 3)

device_1:
 go test()

 for {
 bondgo.IOWrite(out0, bondgo.IORead(in0)+1)
 }
}

BM 0

I nputsOut put s

BM 1

I nputs Out put s

53

3 5

Easy solution to

move towards

multilayers

architectures

This scenario extends the logic to a multi-device environment. A dedicated protocol over
ethernet enables the communication among devices.

000000000000 clr r0
001000000000 r2m r0 0
010000000001 rset r0 1
001000000000 r2m r0 0
011000000000 m2r r0 0
100000000000 wwr r0 ch0
101100000000 chw r1
110000000000 wrd r0 ch0
101100000000 chw r1
001000000000 r2m r0 0
111010000000 j 4

Processor 0
0000000 clr r0
0010000 r2m r0 0
0100000 wrd r0 ch0
0111000 chw r1
0010000 r2m r0 0
1000000 m2r r0 0
1010000 inc r0
0010000 r2m r0 0
1000000 m2r r0 0
1100000 wwr r0 ch0
0111000 chw r1
1110010 j 2

Processor 1
Processor 0

P0 channel

Processor 1

P1 channel

channel

p0ch0

ch0

p1ch0

Single Multicore

package main
import (
 "bondgo"
)
func pong(c chan uint8) {
 var ball uint8
 for {
 ball = <-c
 ball++
 c <- ball
 }
}
func main() {
 ball:=uint8(1)
 ch := make(chan uint8)
 go pong(ch)
 for {
 ch <- ball
 ball = <-ch
 }
 }

y User friendly

approch to create

your

microprocessor

Simple scenario with two CPs exchanging data through a Channel. The Go source code is
compiled using the Bondgo Arch-compiler which produces the related architecture.

3

4

1 1 1 1

2 2

22

Ongoing preliminary performance tests

- Reusability: the same object can be recycled as many times as necessary, contributing to an efficient use of resources and
offering a solution to the needs of the 4.0 industry;
- Open source: the whole architecture is built on lock-free programming;
- Extensibility: it can be changed according to the evolving needs of its users, in order to make it suitable for their specific
problems;
- Distributed processing: the architecture is meant to distribute the processing power among the ecosystem modules;
- Environmentally friendly: reducing power and raw material;

