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The BondMachine (BM) is an innovative computer architecture built on 
two main components: Connecting Processors (CPs) and Shared Objects 
(SOs). CPs have different Instruction Set Architecture (ISA) and can be 
connected together sharing resources. The result is a heterogeneous 
system perfectly fitted to a specific computational problem. The cores are 
particularly simple (i.e. optimized to execute atomic tasks), and their 
problem solving potential mainly relies on how they are interconnected. 
Moreover, in order to use many well-known tools and techniques ranging 
from languages to compilers, the "register machine" abstraction has been 
kept.
The BM can be used as a general purpose computer architecture or as an 
high specialized device perfectly suited to fit specific problems; 
furthermore the BM is flexible enough to be adopted in different scenarios 
like Internet of  Things (IoT), Cyber Physical System (CPS) and High 
Performance Computing (HPC).
The flexibility of  the BM architecture makes possible the use of   
evolutionary algorithms that select architectures, processors programs 
and interconnections.
Currently the BM is implemented by using the Field Programmable Gate 
Array (FPGA) chips that are the most powerful implementations of  
reconfigurable hardware nowadays. The implemented EtherBond protocol 
allows to build distributed systems. 
The BM architecture combined with all these technologies results in a 
brand new computing environment: The BondMachine Ecosystem.
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 A complete example of  the BondMachine architecture. It consists of  two inputs and tree outputs 
interconnected between the input/output registers of  the processors. Shared objects, such as memory, 
Channel and Barrier, are connected among the processors.

Connecting Processor Shared Object

The CP is the computing core of  
the BondMachine. Several CPs 
can be configured in arbitrary 
connection topologies within the 
BondMachine. They can have 
different registers, istruction 
sets, io-registers and still 
cooperating..

Any kind of  component the can be 
shared among CPs. Shared 
Objects increase the processing 
capability and the functionality of  
the BM improving the high-speed 
synchronization and 
communication between tasks 
running on separate CPs.

The BondMachine architecture consists of  interconnections among Connecting Processors and Shared 
Objects (SOs) built to implement dedicated tasks. The main features of  this kind of  architecture is the 
possibility to configure:
- the number of  processor cores and their types
- the number of  inputs and outputs

The BondMachine architecture

Conclusion

We designed and developed an innovative computer architecture prototype, which considerably smooths the allocation of  hardware 
resources, even among multiple devices, and offers an alternative way to solve complex computational problems.
The key aspect of  the project is the opportunity to manage the hardware without an operating system allocating the resources by using 
an high level program (i.e. the Go language). This is what makes the system particularly user-friendly.
The combination of  the BM architecture with hardware reconfiguration technologies (FPGA) and a dedicated communication protocol 
over Ethernet is a strategy aimed at creating a smart ecosystem, with the following selling points:  

The Prototype 

Complex Multicore Systems 
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Optimizing a 

single device to 

support intricated 

computational 

workflows

A graphical rappresentation of  a multilayer neural network as it is syntetized in the 
BondMachine ecosystem.

Complex Interconnected Multicores
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Extending the very same approch to

Enable the "IoT as a service"

Many distributed devices collaborating as a 

single system 

A graphical rappresentation of  how to implement a distributed system of  
BondMachines. The communication among devices follows the very same approch as 
the communication among cores in a single device.

an OS-less approch to reduce the Software/Hardware gap

The prototype shown in this picture is composed of  4 FPGA evalution board (1) equiped with SPI ethernet dongles (2) that are connected throught a switch (3). The board are connected to a power supply (4). 

BondMachine 

ecosystem:

a multidevice

prototype

Simple Interconnected Multicores

package main

func test() {

 in0 = bondgo.Make(bondgo.Input, 3)
 out1 = bondgo.Make(bondgo.Output, 7)
 out0 = bondgo.Make(bondgo.Output, 5)
for {
     bondgo.IOWrite(out0, bondgo.IORead(in0)+1)
 }
}

func main() {
 in0 = bondgo.Make(bondgo.Input, 5)
 in1 = bondgo.Make(bondgo.Input, 8)
 out0 = bondgo.Make(bondgo.Output, 3)

device_1:
    go test()

 for {
     bondgo.IOWrite(out0, bondgo.IORead(in0)+1)
 }
}
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Easy solution to 

move towards 

multilayers 

architectures

This scenario extends the logic to a multi-device environment. A dedicated protocol over 
ethernet enables the communication among devices.
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Single Multicore 

package main
import (
        "bondgo"
)
func pong(c chan uint8) {
        var ball uint8 
        for {
                ball = <-c
                ball++
                c <- ball
        } 
}
func main() {
        ball:=uint8(1)
        ch := make(chan uint8)
        go pong(ch)
        for {
                ch <- ball 
                ball = <-ch
        }
 }

y User friendly 

approch to create 

your 

microprocessor

Simple scenario with two CPs exchanging data through a Channel. The Go source code is 
compiled using the Bondgo Arch-compiler which produces the related architecture.
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Ongoing preliminary performance tests

- Reusability: the same object can be recycled as many times as necessary, contributing to an efficient use of  resources and 
offering a solution to the needs of  the 4.0 industry;
- Open source: the whole architecture is built on lock-free programming;
- Extensibility: it can be changed according to the evolving needs of  its users, in order to make it suitable for their specific 
problems;
- Distributed processing: the architecture is meant to distribute the processing power among the ecosystem modules;
- Environmentally friendly: reducing power and raw material;


